日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,PA=AB=1,PB=PD=
2
,點(diǎn)E在PD上,且PE:ED=2:1.
(1)求證:PA⊥平面ABCD;
(2)求二面角D-AC-E的余弦值;
(3)在棱PC上是否存在一點(diǎn)F,使得BF∥平面ACE.
分析:(1)PA=AB=1,PB=
2
,可得PA⊥AB.同理PA⊥AD.得證.
(2)設(shè)出平面ACE的一個(gè)法向量為
n
,根據(jù)法向量與平面內(nèi)任一向量垂直,數(shù)量積為0,構(gòu)造方程組,求出平面ACE的法向量為
n
的坐標(biāo),代入面面夾角向量公式,即可求出答案.
(3)假設(shè)在棱PC存在一點(diǎn)F,使得BF∥平面AEC,則須
BF
n
垂直.?dāng)?shù)量積為0,利用方程解的存在與否判定點(diǎn)F是否存在.
解答:精英家教網(wǎng)解:(1)正方形ABCD邊長(zhǎng)為1,PA=1,PB=PD=
2

所以,∠PAB=∠PAD=90°,即PA⊥AB,PA⊥AD,AB∩AD=A,
根據(jù)直線和平面垂直的判定定理,
有PA⊥平面ABCD.         
(2)如圖,以A為坐標(biāo)原點(diǎn),直線AB、AD、AP分別x軸、y軸、z軸,建立空間直角坐標(biāo)系.
AC
=(1 ,1 ,0)
AE
=(0 ,
2
3
 ,
1
3
)

由(1)知
AP
為平面ACD的法向量,
AP
=(0 ,0 ,1)

設(shè)平面ACE的法向量為
n
=(a,b,c)

a+b=0
2
3
b+
1
3
c=0

令c=6,則b=-3,a=3,
n
=(3,-3,6)
,…(4分)
設(shè)二面角D-AC-E的平面角為θ,則|cosθ|=
|
n
AP
|
|
n
||
AP
|
=
6
3

又有圖可知,θ為銳角,
故所求二面角的余弦值為
6
3

(3)設(shè)
PF
PC
(λ∈[0 , 1])
,則
PF
=λ(1 ,  1,-1)=(λ,  λ,-λ)
BF
=
BP
+
PF
=(λ-1,  λ,1-λ)

若BF∥平面ACE,則
BF
n
,即
BF
n
=0
,(λ-1,λ,1-λ)•(3,-3,6)=0,
計(jì)算得λ=
1
2

所以,存在滿足題意的點(diǎn),即當(dāng)F是棱PC的中點(diǎn)時(shí),BF∥平面ACE.…(8分)
點(diǎn)評(píng):(1)注意勾股定理及其逆定理在證明線線垂直時(shí)價(jià)值.
(2)兩平面法向量的夾角θ與兩平面間的夾角φ關(guān)系是相等或互補(bǔ).但必有|cosθ|=|cosφ|.
(3)此問(wèn)重點(diǎn)考查了利用空間向量的方法及假設(shè)存在于方程的思想進(jìn)行求解的方法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).
(Ⅰ)求證:BD⊥FG;
(Ⅱ)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(Ⅰ)求證:PD⊥BC;
(Ⅱ)求二面角B-PD-C的大小;
(Ⅲ)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).
(Ⅰ)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說(shuō)明理由;
(Ⅱ)當(dāng)二面角B-PC-D的大小為
3
時(shí),求PC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面是正方形的四棱錐P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求證:PD⊥BC;
(II)求二面角B-PD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一動(dòng)點(diǎn).
(1)求證:BD⊥FG;
(2)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說(shuō)明理由.
(3)如果PA=AB=2,求三棱錐B-CDF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 日韩一区二区三区在线播放 | 欧美一级性 | 久久99精品国产 | 亚洲一区二区三区欧美 | 精品久久久久久久久久久久 | 在线日韩 | 亚洲午夜视频 | 91亚洲精华国产精华精华液 | 免费黄频在线观看 | 在线久草| 国产免费成人在线 | 日韩成人在线看 | 久久久久国产 | 久久精品成人免费视频 | 一区二区久久 | 欧美一区三区三区高中清蜜桃 | av在线精品 | 亚洲国产精品99久久久久久久久 | 一级毛片在线看aaaa | 97在线视频免费 | 亚洲一级毛片 | 欧美成人午夜免费视在线看片 | 国产精品久久久久久久久久久久 | 亚洲国产免费 | a在线观看 | 视频一区二区中文字幕日韩 | 久久综合狠狠综合久久综合88 | 国产精品免费看 | 国产精品久久久99 | 欧美成人精品一区 | 男人天堂亚洲天堂 | 一区欧美 | 亚洲一区二区三区四区五区午夜 | 国产激情视频 | 一区二区三区在线免费观看 | 日本视频免费高清一本18 | 九九精品视频在线观看 | 成年免费观看视频 | 日韩三级电影免费观看 | 亚洲精品久久久久久久久久 | 日韩第1页|