日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知直線l的參數(shù)方程為
x=
3
+
1
2
t
y=2+
3
2
t
(t為參數(shù)),曲線C的參數(shù)方程為
x=4cosθ
y=4sinθ
(θ為參數(shù)).

(Ⅰ)將曲線C的參數(shù)方程化為普通方程;
(Ⅱ)若直線l與線C交于A、B兩點,求線段AB的長.
分析:(Ⅰ)利用三角函數(shù)的平方關系sin2θ+cos2θ=1消去參數(shù)θ,即可將曲線C的參數(shù)方程為
x=4cosθ
y=4sinθ
(θ為參數(shù)).
化為普通方程;
(Ⅱ)先將
x=
3
+
1
2
t
y=2+
3
2
t
代入(1)中的普通方程得到一個關于參數(shù)t的一元二次方程,再利用直線的參數(shù)方程中t的幾何意義結合根與系數(shù)的關系即可求得線段AB的長.
解答:解:(Ⅰ)由已知得:
cosθ=
x
4
sinθ=
y
4
兩式平方相加得:
x2+y2=16(5分)
(Ⅱ)將
x=
3
+
1
2
t
y=2+
3
2
t
代入x2+y2=16,并整理得t2+3
3
t-9=0

設A,B對應的參數(shù)為t1,t2,則t1+t2=-3
3
,t1t2=-9
|AB|=|t1-t2|=
(t1+t2)2-4t1t2
=3
7
(10分)
點評:本題考查點的極坐標和直角坐標的互化,能在極坐標系中用極坐標刻畫點的位置,體會在直線的參數(shù)方程中參數(shù)的幾何意義,能進行極坐標和直角坐標的互化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

C選修4-4:坐標系與參數(shù)方程已知直線l的參數(shù)方程:
x=2t
y=1+4t
(t為參數(shù)),曲線C的極坐標方程:ρ=2
2
sin(θ+
π
4
),求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

極坐標與參數(shù)方程:
已知直線l的參數(shù)方程是:
x=2t
y=1+4t
(t為參數(shù)),圓C的極坐標方程是:ρ=2
2
sin(θ+
π
4
),試判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=2+
3
2
t
(t為參數(shù)),曲線C的極坐標方程是ρ=
sinθ
1-sin2θ
以極點為原點,極軸為x軸正方向建立直角坐標系,點M(0,2),直線l與曲線C交于A,B兩點.
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)線段MA,MB長度分別記|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程選做題) 已知直線l的參數(shù)方程為
x=
2
2
t
y=1+
2
2
t
(t為參數(shù)),圓C的參數(shù)方程為
x=cosθ+2
y=sinθ
(θ為參數(shù)),則圓心C到直線l的距離為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•香洲區(qū)模擬)已知直線L的參數(shù)方程為:
x=t
y=a+
3
t
(t為參數(shù)),圓C的參數(shù)方程為:
x=sinθ
y=cosθ+1
(θ為參數(shù)).若直線L與圓C有公共點,則常數(shù)a的取值范圍是
[-1,3]
[-1,3]

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 中文字幕a视频 | 日韩电影毛片 | 成人国产在线观看 | 国产第一二区 | 精品999www | 波多野结衣一区二区三区四区 | 欧美性生活免费 | 黄色免费在线播放 | 欧美一性一交 | 国产黄色一级片 | 国产激情视频一区 | 中文字幕av一区二区三区 | 久久精品无码一区二区日韩av | 久久久av | 国产在线观看一区 | 久久精品99国产精品日本 | 99久久婷婷国产综合精品电影 | 亚洲一区| 国产精品视频资源 | 国产精品久久久久久久久久久久 | 国产精品99久久久久久www | 一区福利视频 | 一区二区不卡视频 | 久久一区二区三区四区 | 中文字幕亚洲一区 | 国产精品久久久一区二区三区 | 综合五月激情 | 成人h动漫精品一区二区器材 | 国产一区二区三区免费 | a级毛片免费高清视频 | 久久成人国产精品入口 | 99精品全国免费观看视频软件 | 韩国女主播bj精品久久 | 欧美日韩综合精品 | 精品久久久久久久久久久久久久久 | 久久这| 欧美精品在线一区 | 成人日韩 | 日本免费黄色网 | 亚洲国产精品人人爽夜夜爽 | 日本久久久久久久久久久久 |