【題目】已知等比數列{an}滿足an+1+an=92n﹣1 , n∈N* . (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=nan , 數列{bn}的前n項和為Sn , 若不等式Sn>kan﹣1對一切n∈N*恒成立,求實數k的取值范圍.
【答案】解:(Ⅰ)設等比數列{an}的公比為q, ∵an+1+an=92n﹣1 ,
∴a2+a1=9,a3+a2=18,
∴q= =
=2
又2a1+a1=9,∴a1=3.
∴an=32n﹣1 . n∈N* .
(Ⅱ)bn=nan=3n2n﹣1 .
∴Sn=3×1×20+3×2×21+…+3(n﹣1)×2n﹣2+3n×2n﹣1 ,
∴ Sn=1×20+2×21+…+(n﹣1)×2n﹣2+n×2n﹣1 ,
∴ Sn=1×21+2×22+…+(n﹣1)×2n﹣1+n×2n ,
∴﹣ Sn=1+21+22+…+2n﹣1﹣n×2n=
﹣n×2n=(1﹣n)2n﹣1,
∴Sn=3(n﹣1)2n+3,
∵Sn>kan﹣1對一切n∈N*恒成立,
∴k< =
=2(n﹣1)+
,
令f(n)=2(n﹣1)+ ,
∴f′(n)=2+ (
)n>0,
∴f(n)隨n的增大而增大,
∴f(n)min=f(1)= ,
∴實數k的取值范圍為(﹣∞, ).
【解析】(Ⅰ)利用等比數列{an}滿足an+1+an=92n﹣1 , 確定數列的公比與首項,即可求數列{an}的通項公式;(Ⅱ)利用錯誤相減法求出Sn , 再利用不等式Sn>kan﹣1,分離參數,求最值,即可求實數k的取值范圍.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l過點M(3,4),其傾斜角為45°,圓C的參數方程為 .再以原點為極點,以x正半軸為極軸建立極坐標系,并使得它與直角坐標系xoy有相同的長度單位.
(1)求圓C的極坐標方程;
(2)設圓C與直線l交于點A、B,求|MA||MB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=2cos2x的圖象向右平移 個單位后得到函數g(x)的圖象,若函數g(x)在區間[0,
]和[2a,
]上均單調遞增,則實數a的取值范圍是( )
A.[ ,
]
B.[ ,
]
C.[ ,
]
D.[ ,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為1,
為
中點,連接
,則異面直線
和
所成角的余弦值為_____.
【答案】
【解析】
連接CD1,CM,由四邊形A1BCD1為平行四邊形得A1B∥CD1,即∠CD1M為異面直線A1B和D1M所成角,再由已知求△CD1M的三邊長,由余弦定理求解即可.
如圖,
連接,由
,可得四邊形
為平行四邊形,
則,∴
為異面直線
和
所成角,
由正方體的棱長為1,
為
中點,
得,
.
在中,由余弦定理可得,
.
∴異面直線和
所成角的余弦值為
.
故答案為:.
【點睛】
本題考查異面直線所成角的求法,異面直線所成的角常用方法有:將異面直線平移到同一平面中去,達到立體幾何平面化的目的;或者建立坐標系,通過求直線的方向向量得到直線夾角或其補角.
【題型】填空題
【結束】
16
【題目】在中,角
所對的邊分別是
,
是
的中點,
,
,
面積的最大值為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,圓形紙片的圓心為,半徑為1,該紙片上的等邊三角形
的中心為
.
、
、
為圓
上的點,
,
,
分別是以
,
,
為底邊的等腰三角形.沿虛線剪開后,分別以
,
,
為折痕折起
,
,
,使得
、
、
重合,得到三棱錐.當
的邊長變化時,所得三棱錐體積的最大值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(12分)已知等差數列{an}中,a1=1,a3=﹣3.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{an}的前k項和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖在平面直角坐標系xOy中,圓C的方程為,且圓C與y軸交于M,N兩點(點N在點M的上方),直線
與圓C交于A,B兩點。
(1)若,求實數k的值。
(2)設直線AM,直線BN的斜率分別為,若存在常數
使得
恒成立?若存在,求出a的值.若不存在請說明理由。
(3)若直線AM與直線BN相較于點P,求證點P在一條定直線上。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com