【題目】有10名選手參加某項(xiàng)詩(shī)詞比賽,計(jì)分規(guī)則如下:比賽共有6道題,對(duì)于每一道題,10名選手都必須作答,若恰有個(gè)人答錯(cuò),則答對(duì)的選手該題每人得
分,答錯(cuò)選手該題不得分.比賽結(jié)束后,關(guān)于選手得分情況有如下結(jié)論:
①若選手甲答對(duì)6道題,選手乙答對(duì)5道題,則甲比乙至少多得1分:
②若選手甲和選手乙都答對(duì)5道題,則甲和乙得分相同;
③若選手甲的總分比其他選手都高,則甲最高可得54分
其中正確結(jié)論的個(gè)數(shù)是( )
A.0B.3C.2D.1
【答案】C
【解析】
根據(jù)題目所給的規(guī)則逐項(xiàng)判斷,只有②不對(duì).
①甲全對(duì),得到全部題目分?jǐn)?shù),乙錯(cuò)一道題,得到比甲少一題的分?jǐn)?shù),且這一題至少為1分(至少1人答錯(cuò)),故甲比乙至少多得1分,故①正確;
②若選手甲和選手乙都答對(duì)5道題,如果錯(cuò)的題目是同一題,得分相同;如果錯(cuò)的是不同題目且所錯(cuò)題目得分不同,則他們的得分就不一樣,故②錯(cuò);
③若選手甲的總分比其他選手都高,則甲得分最高的情況為:甲答對(duì)6道題,其他人所有題目全部答錯(cuò),則甲每題得9分,最高54分,故③正確.
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,如果對(duì)于定義域
內(nèi)的任意實(shí)數(shù)
,對(duì)于給定的非零常數(shù)
,總存在非零常數(shù)
,恒有
成立,則稱函數(shù)
是
上的
級(jí)類增周期函數(shù),周期為
,若恒有
成立,則稱函數(shù)
是
上的
級(jí)類周期函數(shù),周期為
.
(1)已知函數(shù)是
上的周期為1的2級(jí)類增周期函數(shù),求實(shí)數(shù)
的取值范圍;
(2)已知,
是
上
級(jí)類周期函數(shù),且
是
上的單調(diào)遞增函數(shù),當(dāng)
時(shí),
,求實(shí)數(shù)
的取值范圍;
(3)是否存在實(shí)數(shù),使函數(shù)
是
上的周期為
的
級(jí)類周期函數(shù),若存在,求出實(shí)數(shù)
和
的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是直角梯形,
,
,
,點(diǎn)
在線段
上,且
,
,
平面
.
(1)求證:平面平面
;
(2)當(dāng)四棱錐的體積最大時(shí),求四棱錐
的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
的在數(shù)集
上都有定義,對(duì)于任意的
,當(dāng)
時(shí),
或
成立,則稱
是數(shù)集
上
的限制函數(shù).
(1)求在
上的限制函數(shù)
的解析式;
(2)證明:如果在區(qū)間
上恒為正值,則
在
上是增函數(shù);[注:如果
在區(qū)間
上恒為負(fù)值,則
在區(qū)間
上是減函數(shù),此結(jié)論無(wú)需證明,可以直接應(yīng)用]
(3)利用(2)的結(jié)論,求函數(shù)在
上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若方程在
內(nèi)有兩個(gè)不等實(shí)根,求
的取值范圍(其中
為自然對(duì)數(shù)的底);
(2)令,如果
圖象與
軸交于
,
,
中點(diǎn)為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)曲線(
),
是直線
上的任意一點(diǎn),過(guò)
作
的切線,切點(diǎn)分別為
、
,記
為坐標(biāo)原點(diǎn).
(1)設(shè),求
的面積;
(2)設(shè)、
、
的縱坐標(biāo)依次為
、
、
,求證:
;
(3)設(shè)點(diǎn)滿足
,是否存在這樣的點(diǎn)
,使得
關(guān)于直線
的對(duì)稱點(diǎn)
在
上?若存在,求出
的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知函數(shù)為自然對(duì)數(shù)的底數(shù))
(1)求的單調(diào)區(qū)間,若
有最值,請(qǐng)求出最值;
(2)是否存在正常數(shù),使
的圖象有且只有一個(gè)公共點(diǎn),且在該公共點(diǎn)處有共同的切線?若存在,求出
的值,以及公共點(diǎn)坐標(biāo)和公切線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,直線
與
軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且
過(guò)F的直線
與C相交于A、B兩點(diǎn).
(1)求C的方程;
(2)設(shè)點(diǎn)且
的面積為
求直線
的方程;
(3)若線段AB的垂直平分線與C相交于M、N兩點(diǎn),且A、M、B、N四點(diǎn)在同一圓上,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的左、右焦點(diǎn)分別為F1,F2,離心率為
,兩準(zhǔn)線之間的距離為8.點(diǎn)P在橢圓E上,且位于第一象限,過(guò)點(diǎn)F1作直線PF1的垂線l1,過(guò)點(diǎn)F2作直線PF2的垂線l2.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l1,l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com