日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(2013•宜賓二模)已知函數ft(x)=
1
1+x
-
1
(1+x)2
(t-x),其中t為正常數.
(Ⅰ)求函數ft(x)在(0,+∞)上的最大值;
(Ⅱ)設數列{an}滿足:a1=
5
3
,3an+1=an+2,(1)求數列{an}的通項公式an; (2)證明:對任意的x>0,
1
an
f
2
3n
(x)(n∈N*);
(Ⅲ)證明:
1
a1
+
1
a2
+…+
1
an
n2
n+1
分析:(Ⅰ)求導數,確定ft(x)在區間(0,t)上單調遞增,在區間(t,+∞)上單調遞減,從而可求函數ft(x)在(0,+∞)上的最大值;
(Ⅱ)(1)證明數列{an-1}為等比數列,即可求數列{an}的通項公式an; 
(2)證法一:從已有性質結論出發;證法二:作差比較法,即可得到結論;
(Ⅲ)證法一:從已經研究出的性質出發,實現求和結構的放縮;證法二:應用柯西不等式實現結構放縮,即可得到結論.
解答:(Ⅰ)解:由ft(x)=
1
1+x
-
1
(1+x)2
(t-x)
,可得ft(x)=
2(t-x)
(1+x)3
(x>0)
,…(2分)
所以,ft(x)>0?0<x<tft(x)<0?x>t,…(3分)
則ft(x)在區間(0,t)上單調遞增,在區間(t,+∞)上單調遞減,
所以,ft(x)max=ft(t)=
1
1+t
.…(4分)
(Ⅱ)(1)解:由3an+1=an+2,得an+1-1=
1
3
(an-1)
,又a1-1=
2
3

則數列{an-1}為等比數列,且an-1=
2
3
•(
1
3
)n-1=
2
3n
,…(5分)
an=
2
3n
+1=
2+3n
3n
為所求通項公式.…(6分)
(2)證明:即證對任意的x>0,
1
an
f
2
3n
(x)=
1
1+x
-
1
(1+x)2
(
2
3n
-x)
(n∈N*)…(7分)
證法一:(從已有性質結論出發)
由(Ⅰ)知f
2
3n
(x)max=f
2
3n
(
2
3n
)=
1
1+
2
3n
=
3n
3n+2
=
1
an
…(9分)
即有
1
an
f
2
3n
(x)(n∈N*)
對于任意的x>0恒成立.…(10分)
證法二:(作差比較法)
an=
2
3n
+1>0
an-1=
2
3n
>0
…(8分)
1
an
-f
2
3n
(x)=
1
an
-
1
1+x
+
1
(1+x)2
(
2
3n
-x)=
1
an
-
1
1+x
+
1
(1+x)2
(an-1-x)

=
1
an
-
2
1+x
+
an
(1+x)2
=[
1
an
-
an
1+x
]2≥0
…(9分)
即有
1
an
f
2
3n
(x)(n∈N*)
對于任意的x>0恒成立.…(10分)
(Ⅲ)證明:證法一:(從已經研究出的性質出發,實現求和結構的放縮)
由(Ⅱ)知,對于任意的x>0都有
1
an
1
1+x
-
1
(1+x)2
(
2
3n
-x)

于是,
1
a1
+
1
a2
+…+
1
an
n
k=1
[
1
1+x
-
1
(1+x)2
(
2
3k
-x)]
=
n
1+x
-
1
(1+x)2
(
2
3
+
2
32
+…+
2
3n
-nx)

…(11分)對于任意的x>0恒成立
特別地,令1-
1
3n
-nx0=0
,即x0=
1
n
(1-
1
3n
)>0
,…(12分)
1
a1
+
1
a2
+…+
1
an
n
1+x0
=
n
1+
1
n
(1-
1
3n
)
=
n2
n+1-
1
3n
n2
n+1
,故原不等式成立.…(14分)
證法二:(應用柯西不等式實現結構放縮)
由柯西不等式:(x1y1+x2y2+…+xnyn)2≤(
x
2
1
+
x
2
2
+…+
x
2
n
)(
y
2
1
+
y
2
2
+…+
y
2
n
)

其中等號當且僅當xi=kyi(i=1,2,…n)時成立.
xi=
1
ai
yi=
ai
,可得(
1
a1
+
1
a2
+…+
1
an
)(a1+a2+…+an)≥(
1
a1
a1+
1
a2
a2+…+
1
an
an)2=n2

1
a1
+
1
a2
+…+
1
an
n2
a1+a2+…+an

而由an=
2
3n
+1
,所以a1+a2+…+an=n+2×
1
3
(1-
1
3n
)
1-
1
3
=n+1-
1
3n

1
a1
+
1
a2
+…+
1
an
n2
n+1-
1
3n
n2
n+1
,所證不等式成立.
點評:本題考查導數知識的運用,考查數列的通項,考查數列與不等式的綜合,考查學生分析解決問題的能力,難度大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•宜賓二模)函數f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)的圖象如圖所示,為了得到f(x)的圖象,則只需將g(x)=sin2x的圖象(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•宜賓二模)已知函數f(x)=
-x2-2x+a(x<0)
f(x-1)(x≥0)
,且函數y=f(x)-x恰有3個不同的零點,則實數a的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•宜賓二模)已知集合A={1,2},集合B滿足A∪B={1,2,3},則集合B有(  )個.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•宜賓二模)在一個幾何體的三視圖中,正視圖和俯視圖如圖所示,則該幾何體的體積為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•宜賓二模)如果執行如圖所示的框圖,輸入N=10,則輸出的數等于(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久精品网站 | 国产精品一区二 | 九九精品在线 | 亚洲成人福利在线观看 | 最新色 | 日韩成人国产 | 成人免费视频一区二区 | 国产综合视频在线观看 | 波多野结衣一二三区 | 日韩成人三级 | 自拍偷拍欧美 | 久久人人爽爽人人爽人人片av | 91精品国产麻豆 | 国产激情午夜 | 综合天天 | 探花系列| 国产精品久久一区 | 久久另类| 日韩免费精品视频 | 91国内视频在线观看 | 91污视频 | 精品亚洲永久免费精品 | 丁香婷婷网 | av一级久久 | 日本免费一二区 | 成人做爰999 | 精品乱码久久久 | 亚洲欧美国产另类 | 国产在线观看免费av | 国产自产精品视频 | 日韩欧美中文字幕视频 | 精品在线一区 | 欧美日一区二区 | 国产精品兄妹在线观看麻豆 | 亚洲国产精品av | 日本中文字幕电影 | 成人国产精品免费观看 | 欧洲大片精品免费永久看nba | 欧美日韩一区二区视频在线观看 | 1000部精品久久久久久久久 | 91偷拍精品一区二区三区 |