【題目】2019年11月18日國際射聯步手槍世界杯總決賽在莆田市綜合體育館開幕,這是國際射聯步手槍世界杯總決賽時隔10年再度走進中國.為了增強趣味性,并實時播報現場賽況,我校現場小記者李明和播報小記者王華設計了一套播報轉碼法,發送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實文)按字母分解,其中英文的的26個字母(不論大小寫)依次對應1,2,3,…,26這26個自然數通過變換公式:
,將明文轉換成密文,如
,即
變換成
,即
變換成
.若按上述規定,若王華收到的密文是
,那么原來的明文是( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】對于各項均為正數的無窮數列,記
,給出下列定義:
①若存在實數,使
成立,則稱數列
為“有上界數列”;
②若數列為有上界數列,且存在
,使
成立,則稱數列
為“有最大值數列”;
③若,則稱數列
為“比減小數列”.
(1)根據上述定義,判斷數列是何種數列?
(2)若數列中,
,
,求證:數列
既是有上界數列又是比減小數列;
(3)若數列是單調遞增數列,且是有上界數列,但不是有最大值數列,求證:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
,其左焦點為
.過
點的直線
交橢圓于
、
兩點,交
軸的正半軸于點
.
(1)求橢圓的方程;
(2)過點且與
垂直的直線交橢圓于
、
兩點,若四邊形
的面積為
,求直線
的方程;
(3)設,
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,且點
在橢圓C上.
(1)求橢圓C的標準方程;
(2)過橢圓上異于其頂點的任意一點Q作圓
的兩條切線,切點分別為
不在坐標軸上),若直線
在x軸,y軸上的截距分別為
,證明:
為定值;
(3)若是橢圓
上不同兩點,
軸,圓E過
,且橢圓
上任意一點都不在圓E內,則稱圓E為該橢圓的一個內切圓,試問:橢圓
是否存在過焦點F的內切圓?若存在,求出圓心E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}的各項均為正數,且2a1+3a2=1, =9a2a6.
(1)求數列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an,求數列的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,對于項數為
的有窮數列
,令
為
中最大值,稱數列
為數列
的“創新數列”.例如數列3,5,4,7的創新數列為3,5,5,7. 考查正整數1,2,…,
的所有排列,將每種排列都視為一個有窮數列
.
(1)若,寫出創新數列為3,4,4,4的所有數列
;
(2)是否存在數列的創新數列為等比數列?若存在,求出符合條件的
的創新數列;若不存在,請說明理由.
(3)是否存在數列,使它的創新數列為等差數列?若存在,求出滿足所有條件的數列
的個數;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點滿足方程
.
(1)求點M的軌跡C的方程;
(2)作曲線C關于軸對稱的曲線,記為
,在曲線C上任取一點
,過點P作曲線C的切線l,若切線l與曲線
交于A,B兩點,過點A,B分別作曲線
的切線
,證明
的交點必在曲線C上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產的某批產品的銷售量萬件(生產量與銷售量相等)與促銷費用
萬元滿足
(其中
,
為正常數).已知生產該產品還需投入成本
萬元(不含促銷費用),產品的銷售價格定為
元
件.
(1)將該產品的利潤萬元表示為促銷費用
萬元的函數;
(2)促銷費用投入多少萬元時,該公司的利潤最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com