【題目】設f(x)是周期為2的奇函數,當0≤x≤1時,f(x)=2x(1﹣x),f(﹣ )= .
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)=3x.
(1)若f(x)=8,求x的值;
(2)對于任意的x∈[0,2],[f(x)-3]3x+13-m≥0恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2-(a+2)x+lnx
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若對任意x1,x2∈(0,+∞),x1<x2,有f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2019·濰坊期末]某鋼鐵加工廠新生產一批鋼管,為了了解這批產品的質量狀況,檢驗員隨機抽取了100件鋼管作為樣本進行檢測,將它們的內徑尺寸作為質量指標值,由檢測結果得如下頻率分布表和頻率分布直方圖:
分組 | 頻數 | 頻率 |
25.05~25.15 | 2 | 0.02 |
25.15~25.25 | ||
25.25~25.35 | 18 | |
25.35~25.45 | ||
25.45~25.55 | ||
25.55~25.65 | 10 | 0.1 |
25.65~25.75 | 3 | 0.03 |
合計 | 100 | 1 |
(1)求,
;
(2)根據質量標準規定:鋼管內徑尺寸大于等于25.75或小于25.15為不合格,鋼管尺寸在或
為合格等級,鋼管尺寸在
為優秀等級,鋼管的檢測費用為0.5元/根.
(i)若從和
的5件樣品中隨機抽取2根,求至少有一根鋼管為合格的概率;
(ii)若這批鋼管共有2000根,把樣本的頻率作為這批鋼管的頻率,有兩種銷售方案:
①對該批剩余鋼管不再進行檢測,所有鋼管均以45元/根售出;
②對該批剩余鋼管一一進行檢測,不合格產品不銷售,合格等級的鋼管50元/根,優等鋼管60元/根.
請你為該企業選擇最好的銷售方案,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①正切函數圖象的對稱中心是唯一的;
②若函數的圖像關于直線
對稱,則這樣的函數
是不唯一的;
③若,
是第一象限角,且
,則
;
④若是定義在
上的奇函數,它的最小正周期是
,則
.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(sin(A﹣B),
,
=(1,2sinB),且
=﹣sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對的角. (Ⅰ)求角C的大小;
(Ⅱ)若 ,且S△ABC=
,求邊c的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數,有下列說法:
①它的極大值點為-3,極小值點為3;②它的單調遞減區間為[-2,2];
③方程有且僅有3個實根時,
的取值范圍是(18,54).
其中正確的說法有( )個
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線l的參數方程為 (t為參數,0<α<π),曲線C的極坐標方程為ρsin2θ=4cosθ. (Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設直線l與曲線C相交于A、B兩點,當α變化時,求|AB|的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com