日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
20.若函數f(x)=x3+3ax-1在x=1處的切線與直線y=6x+6平行,則實數a=1;
當a≤0時,若方程f(x)=15有且只有一個實根,則實數a的取值范圍為-$\root{3}{16}$<a≤0.

分析 (1)根據f(x)的解析式求出f(x)的導函數,因為曲線在x=1的切線與y=6x+6平行,得到切線與y=6x+6的斜率相等,由y=6x+6的斜率為6,得到切線的斜率也為6,然后把x=1代入導函數,令求出的函數值等于6列出關于a的方程,求出方程的解即可得到a的值.
(2)求出函數的導數,通過討論a的范圍,求出函數的單調區間,從而確定a的范圍即可.

解答 解:(1)由f(x)=x3+3ax-1,得到f′(x)=3x2+3a,
因為曲線在x=1處的切線與y=6x+6平行,
而y=6x+6的斜率為6,
所以f′(1)=6,即3+3a=6,解得a=1;
(2)令g(x)=x3+3ax-16,
g′(x)=3x2+3a=3(x2+a),
a=0時,g′(x)≥0,g(x)在R遞增,
而x→-∞時,g(x)→-∞,x→+∞時,g(x)→+∞,
故函數g(x)有且只有一個零點,
即方程f(x)=15有且只有一個實根,
a<0時,令g′(x)>0,解得:x>$\sqrt{-a}$或x<-$\sqrt{-a}$,
令g′(x)<0,解得:-$\sqrt{-a}$<x<$\sqrt{-a}$,
則g(x)在(-∞,-$\sqrt{-a}$)遞增,在(-$\sqrt{-a}$,$\sqrt{-a}$)遞減,在($\sqrt{-a}$,+∞)遞增,
故g(x)極大值=g(-$\sqrt{a}$)=a$\sqrt{-a}$+3a$\sqrt{-a}$-16<0,
解得:a>-$\root{3}{16}$,
綜上:-$\root{3}{16}$<a≤0,
故答案為:1,-$\root{3}{16}$<a≤0.

點評 本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,轉化思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

10.已知a>b,下列關系式中一定正確的是(  )
A.a2<b2B.2a<2bC.a+2<b+2D.-a<-b

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知拋物線C:y2=2px(p>0)的焦點為F,若過點F且斜率為B的直線與拋物線相交于M、N兩點,且|MN|=8.
(1)求拋物線C的方程;
(2)設直線l為拋物線C的切線,且l∥MN,點P為直線l上的任意一點,求$\overrightarrow{PM}•\overrightarrow{PN}$的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.若α為鈍角,$cosα=-\frac{3}{5}$,則$cos\frac{α}{2}$的值為(  )
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$-\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.△ABC中,sinA:sinB:sinC=4:5:6,.則a:b:c=4:5:6,cosA:cosB:cosC=12:9:2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.設f(x)是定義在R上的奇函數,當x≤0時,f(x)=3x2-2x,則f(1)=(  )
A.5B.1C.-1D.-5

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.在3張卡片的正反兩面上,分別寫著數字1和2,4和5,7和8,將它們并排組成三位數,不同的三位數的個數是48.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.設F1、F2分別為橢圓C1:$\frac{{x}^{2}}{{a}_{1}^{2}}$+$\frac{{y}^{2}}{{b}_{1}^{2}}$=1(a1>b1>0)與雙曲線C2:$\frac{{x}^{2}}{{a}_{2}^{2}}$-$\frac{{y}^{2}}{{b}_{2}^{2}}$=1(a2>b2>0)的公共焦點,它們在第一象限內交于點M,∠F1MF2=90°,若橢圓的離心率e1∈[$\frac{3}{4}$,$\frac{2\sqrt{2}}{3}$],則雙曲線C2的離心率e2的取值范圍為$[\frac{2\sqrt{14}}{7},\frac{3\sqrt{2}}{2}]$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知角α的終邊與單位圓相交于點$P({{{\frac{4}{5}}_{\;}},-\frac{3}{5}})$,現將角α的終邊繞坐標原點沿逆時針方向旋轉$\frac{π}{3}$,所得射線與單位圓相交于點Q,則點Q的橫坐標為(  )
A.$\frac{{4+3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{3+4\sqrt{3}}}{10}$D.$\frac{{4\sqrt{3}-3}}{10}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩精品一区二区三区中文字幕 | 大黄网站在线观看 | 久久久久久国产精品 | 成人高清视频免费观看 | 九九资源站 | 亚洲精品自在在线观看 | 久久亚洲一区二区三区四区 | 久久久91 | 日韩三区在线观看 | 欧美日韩亚洲国产 | 青草青在线视频 | 日韩一区二区在线视频 | 欧美日韩免费一区二区三区 | 国产中文在线播放 | 国产视频一二三区 | 欧美a在线| 亚洲国产精品久久久久久 | 日韩毛片| 国产视频久久久 | 国产精品免费一区二区三区都可以 | 午夜精品久久久久久久蜜桃app | 成人免费视频一区二区 | 亚洲欧美中文日韩v在线观看 | 久久精品黄色 | 亚洲一区二区三区在线 | 久久精品国产精品亚洲 | 最新伦理片 | 91香蕉视频在线观看 | 一区二区三区免费看 | 国产精品久久免费视频 | 午夜视频在线播放 | 成人不卡视频 | www.一级电影 | 日韩成人免费 | 久久夜视频| 99福利视频| 精品一区免费 | 久久久免费电影 | 一区二区三区四区国产 | 精品国产一区一区二区三亚瑟 | 亚洲午夜精品一区二区三区 |