【題目】已知甲、乙兩名工人在同樣條件下每天各生產100件產品,且每生產1件正品可獲利20元,生產1件次品損失30元,甲、乙兩名工人100天中出現次品件數的情況如表所示.
甲每天生產的次品數/件 | 0 | 1 | 2 | 3 | 4 |
對應的天數/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產的次品數/件 | 0 | 1 | 2 | 3 |
對應的天數/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產的次品數記為(單位:件),日利潤記為
(單位:元),寫出
與
的函數關系式;
(2)按這100天統計的數據,分別求甲、乙兩名工人的平均日利潤.
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①線性相關系數越大,兩個變量的線性相關性越強;反之,線性相關性越弱;
②用來刻畫回歸效果,
越大,說明模型的擬合效果越好;
③根據列聯表中的數據計算得出的
的值越大,兩類變量相關的可能性就越大;
④在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好;
⑤從勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣.
其中真命題的序號是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為的正方形
和高為
的等腰梯形
所在的平面互相垂直,
,
,
與
交于點
,點
為線段
上任意一點.
(Ⅰ)求證:平面
;
(Ⅱ)求與平面
所成角的正弦值;
(Ⅲ)是否存在點使平面
與平面
垂直,若存在,求出
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業新研發了一種產品,產品的成本由原料成本及非原料成本組成,每件產品的非原料成本y(元)與生產該產品的數量x(千件)有關,經統計得到如下數據:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根據以上數據,繪制了散點圖.
參考數據:(其中)
183.4 | 0.34 | 0.115 | 1.53 | 360 | 22385.8 |
參考公式:對于一組數據,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
.
(1)觀察散點圖判斷,與
哪一個適宜作為非原料成本y與生產該產品的數量x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立y與x的回歸方程.
(3)試預測生產該產品10000件時每件產品的非原料成本.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某電視臺主辦的歌手大獎賽上七位評委為甲、乙兩名選手打出的分數的莖葉圖(其中為數字0~9中的一個),則下列結論中正確的是( )
A. 甲選手的平均分有可能和乙選手的平均分相等
B. 甲選手的平均分有可能比乙選手的平均分高
C. 甲選手所有得分的中位數比乙選手所有得分的中位數低
D. 甲選手所有得分的眾數比乙選手所有得分的眾數高
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為提高生產效率,開展技術創新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據工人完成生產任務的工作時間(單位:min)繪制了如下莖葉圖:
(1)根據莖葉圖判斷哪種生產方式的效率更高?并說明理由;
(2)求40名工人完成生產任務所需時間的中位數,并將完成生產任務所需時間超過
和不超過
的工人數填入下面的列聯表:
超過 | 不超過 | |
第一種生產方式 | ||
第二種生產方式 |
(3)根據(2)中的列聯表,能否有99%的把握認為兩種生產方式的效率有差異?
附:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某年級組織學生參加了某項學術能力測試,為了解參加測試學生的成績情況,從中隨機抽取20名學生的測試成績作為樣本,規定成績大于或等于80分的為優秀,否則為不優秀.統計結果如圖:
(1)求的值和樣本的平均數;
(2)從該樣本成績優秀的學生中任選兩名,求這兩名學生的成績至少有一個落在內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】部分與整體以某種相似的方式呈現稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數學家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,如圖.
現在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為_________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com