日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

10.已知函數(shù)$f(x)=\frac{{a{x^2}+4}}{x}$,且f(1)=5.
(1)求a的值;
(2)判斷f(x)的奇偶性,并加以證明;
(3)判斷函數(shù)f(x)在[3,+∞)上的單調(diào)性,并加以證明.

分析 (1)由f(1)=5列出方程求出a的值;
(2)先判斷f(x)為奇函數(shù),求出f(x)和函數(shù)的定義域,再由奇函數(shù)的定義進(jìn)行證明;
(3)先判斷出f(x)在[3,+∞)上的單調(diào)性,利用單調(diào)性的定義證明即可.

解答 解:(1)由條件知f(1)=a+4=5,所以a=1  …(2分)
(2)f(x)為奇函數(shù).
證明如下:由(1)可知,$f(x)=\frac{{x}^{2}+4}{x}$,
則f(x)的定義域為(-∞,0)∪(0,+∞) …(4分)
任意的x∈(-∞,0)∪(0,+∞),
$f(-x)=\frac{{(-x)}^{2}+4}{-x}=-\frac{{x}^{2}+4}{x}=-f(x)$…(6分)
所以函數(shù)f(x)為奇函數(shù).…(7分)
(3)f(x)在[3,+∞)上是增函數(shù).…(8分)
證明如下:任取x1,x2∈[3,+∞),且x1<x2
f(x1)-f(x2)=$\frac{{{x}_{1}}^{2}+4}{{x}_{1}}$-$\frac{{{x}_{2}}^{2}+4}{{x}_{2}}$ 
=$\frac{{{{x}_{2}x}_{1}}^{2}+4{x}_{2}-{x}_{1}{{x}_{2}}^{2}-4{x}_{1}}{{x}_{1}{x}_{2}}$=$\frac{({x}_{1}-{x}_{2})({x}_{1}{x}_{2}-4)}{{x}_{1}{x}_{2}}$…(11分)
因為3≤x1<x2,所以x1-x2<0,則f(x1)-f(x2)<0    …(12分)
所以f(x1)<f(x2),即f(x)在[3,+∞)上是增函數(shù).…(13分)

點評 本題考查定義法證明函數(shù)的奇偶性、單調(diào)性,考查化簡、變形能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.“x>3”是“x>1”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如表:
價格x(元/kg)1015202530
日需求量y(kg)1110865
(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價格x=40元/kg時,日需求量y的預(yù)測值為多少?
參考公式:線性回歸方程$y=bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n•{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{(x_i^{\;}-\overline x)}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定義在R上的偶函數(shù)f(x),當(dāng)x≥0時,f(x)=2x+3.
(1)求f(x)的解析式;
(2)若f(a)=7,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)y=f(x)的定義域是[1,9],則函數(shù)y=f(3x)的定義域為[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.滿足等式cos2x-1=3cosx(x∈[0,π])的x值為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A,B,C的對邊分別為a,b,c,若a+c=8,cosB=$\frac{1}{4}$.
(1)若$\overrightarrow{BA}•\overrightarrow{BC}$=4,求b的值;
(2)若sinA=$\frac{{\sqrt{6}}}{4}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知邊長為a的菱形ABCD中,∠ABC=60°,將該菱形沿對角線AC折起,使BD=a,則三棱錐D-ABC的體積為(  )
A.$\frac{a^3}{6}$B.$\frac{a^3}{12}$C.$\frac{{\sqrt{3}{a^3}}}{12}$D.$\frac{{\sqrt{2}{a^3}}}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知x,y滿足不等式組$\left\{\begin{array}{l}y≤x+1\\ y≥0\\ x≤1\end{array}\right.$,則z=2x-y的最大值為(  )
A.-2B.0C.2D.4

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 成人做爰69片免费 | 欧美一级做性受免费大片免费 | 国产一区在线播放 | 国产欧美激情 | 日韩成人在线观看 | 精品国产一区二区三 | 国产福利在线观看 | 日日夜夜精品视频免费 | 国产真实乱人偷精品 | 黄色一级视频免费看 | 亚洲精品一级 | 亚洲高清视频在线 | 午夜在线国语中文字幕视频 | 九九九免费视频 | 欧美激情一区二区三区 | 国产精品亚洲综合 | 一极黄色片 | 亚洲午夜视频 | 成人在线网 | 日韩欧美在线一区 | 日韩精品免费在线观看 | 欧美三根一起进三p | 黄色网页免费 | 日韩中文字幕精品 | 黄色一级免费视频 | 99热国产在线 | 欧美一级在线播放 | 一区二区三区久久 | 亚洲精品国产一区 | 国产毛片毛片 | 中文字幕在线观看一区二区 | 欧美在线中文字幕 | 一区二区三区四区在线播放 | 成人欧美一区二区三区黑人免费 | 色吧综合 | a视频| 欧美啪啪网 | 日韩在线欧美 | 日产av在线 | 91久久| 国产www |