【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E、F分別為BC、AD的中點,點M在線段PD上.
(1)求證:EF⊥平面PAC;
(2)如果直線ME與平面PBC所成的角和直線ME與平
面ABCD所成的角相等,求的值.
【答案】(1)見解析;(2) .
【解析】試題分析: 由平行四邊形的性質可得
,即
,由面面垂直的性質得出
平面
,故
,從而
平面
以
為原點建立空間直角坐標系,設
,
,求出平面
,平面
的法向量
以及
的坐標,根據線面角相等列方程求解即可得到答案
解析:(1)證明:在平行四邊形中,因為
,
,
所以.由
分別為
的中點,得
, 所以
.
因為側面底面
,且
,所以
底面
.
又因為底面
,所以
.
又因為,
平面
,
平面
,所以
平面
.
(2)解:因為底面
,
,所以
兩兩
垂直,以分別為
、
、
,建立空間直角坐標系,則
,
所以,
,
,
設,則
,
所以,
,易得平面
的法向量
.
設平面的法向量為
,由
,
,得
令
, 得
.
因為直線與平面
所成的角和此直線與平面
所成的角相等,
所以,即
,所以
,
解得,或
(舍). 綜上所得:
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的直角坐標方程;
(2)已知點,直線
與曲線
交于
兩點,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其最小正周期為
.
(1)求的表達式;
(2)將函數的圖象向右平移
個單位長度后,再將得到的圖象上各點的橫坐標伸長到原來的
倍(縱坐標不變),得到函數
的圖象,若關于
的方程
在區間
上有且只有一個實數解,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
,側面
底面
,
,
,
分別為
的中點,點
在線段
上.
(Ⅰ)求證:平面
;
(Ⅱ)如果直線與平面
所成的角和直線
與平面
所成的角相等,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下表格記錄了甲、乙兩組各四名同學的植樹棵數.乙組記錄中有一個數據模糊,無法確認,在圖中以表示.
甲組 | 9 | 9 | 11 | 11 |
乙組 | 8 | 9 | 10 |
(1)如果,求乙組同學植樹棵數的平均數和方差;
(2)如果,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數為19的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】取數游戲:每次游戲中,游戲人按動游泳按鈕,就從如圖:的三個窗口中各彈出一個數字,其中:最左邊窗口可隨機彈出數字4或3,中間窗口可隨機彈出3或2,最右邊窗口可隨機彈出2或1.若彈出的三個數字為“順子”(如:432),則可獲獎10元,若有相鄰兩位數字相同,則可獲獎8元,其他情況獲獎-2元.甲玩了8次游戲后,乙問甲的獲獎情況,甲說:“23元有余,28元不足,3除不盡.”那么甲在這8次游戲中得到“順子”、“相鄰兩位數字相同”、“其他情況”的次數依次為( )
A. 0,4,4 B. 2,2,4 C. 2,3,3 D. 1,3,4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“一帶一路”是“絲綢之路經濟帶”和“21世紀海上絲綢之路”的簡稱.某市為了了解人們對“一帶一路”的認知程度,對不同年齡和不同職業的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認知程度高).現從參賽者中抽取了人,按年齡分成5組,第一組:
,第二組:
,第三組:
,第四組:
,第五組:
,得到如圖所示的頻率分布直方圖,已知第一組有6人.
(1)求;
(2)求抽取的人的年齡的中位數(結果保留整數);
(3)從該市大學生、軍人、醫務人員、工人、個體戶 五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1~5組,從這5個按年齡分的組和5個按職業分的組中每組各選派1人參加知識競賽,分別代表相應組的成績,年齡組中1~5組的成績分別為93,96,97,94,90,職業組中1~5組的成績分別為93,98,94,95,90.
(Ⅰ)分別求5個年齡組和5個職業組成績的平均數和方差;
(Ⅱ)以上述數據為依據,評價5個年齡組和5個職業組對“一帶一路”的認知程度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com