日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

給定項數為m (m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,3,…,m),這樣的數列叫”0-1數列”.若存在一個正整數k (2≤k≤m-1),使得數列{an}中某連續k項與該數列中另一個連續k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”.例如數列{an}:0,1,1,0,1,1,0,因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(1)已知數列{bn}:0,0,0,1,1,0,0,1,1,0,則該數列 ________“5階可重復數列”(填“是”或“不是”);
(2)要使項數為m的所有”0-1數列”都為“2階可重復數列”,則m的最小值是 ________.

解:(1)數列{bn},因為b2,b3,b4,b5,b6與b6,b7,b8,b9,b10按次序對應相等,
所以數列{bn}是“5階可重復數列”,重復的這五項為0,0,1,1,0;
(2)因為數列{an}的每一項只可以是0或1,所以連續2項共有22=4種不同的情形.
若m=6,則數列{an}中有5組連續2項,則這其中至少有兩組按次序對應相等,即項數為6的數列{an}一定是“2階可重復數列”;
若m=5,數列0,0,1,1,0不是“2階可重復數列”;則3≤m<5時,
均存在不是“3階可重復數列”的數列{an}.
所以,要使數列{an}一定是“2階可重復數列”,則m的最小值是6.
分析:(1)觀察數列特點看元素是否按次序對應相等即看判斷數列是否為5階可重復數列;
(2)項數為m的數列{an}是2階可重復數列,數列的每一項只可以是0或1,則連續2項共有4種不同的情況,m=6,數列有5組連續2項,而3≤m≤5時,均存在不是“2階可重復數列”的數列,要使數列一定是2階可重復數列m的最小值必須是6.
點評:考查學生理解數列概念,靈活運用數列表示法的能力,旨在考查學生的觀察分析和歸納能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

15、給定項數為m (m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,3,…,m),這樣的數列叫”0-1數列”.若存在一個正整數k (2≤k≤m-1),使得數列{an}中某連續k項與該數列中另一個連續k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”.例如數列{an}:0,1,1,0,1,1,0,因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(1)已知數列{bn}:0,0,0,1,1,0,0,1,1,0,則該數列
“5階可重復數列”(填“是”或“不是”);
(2)要使項數為m的所有”0-1數列”都為“2階可重復數列”,則m的最小值是
6

查看答案和解析>>

科目:高中數學 來源: 題型:

4、給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•武漢模擬)給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”.例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,數列{an}的最后一項am=
1
1

查看答案和解析>>

科目:高中數學 來源:2009-2010學年高考模擬數學專題:壓軸大題(解析版) 題型:解答題

給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人在线亚洲 | 夜夜骑日日操 | 国产精品久久久久久久一区探花 | 国产精品久久久久久久久久东京 | 亚洲视频www| 精品国产乱码久久久久久1区2区 | 奇米色欧美一区二区三区 | 午夜免费| 日本不卡高清视频 | 国产精品一区免费在线观看 | 日韩一及片 | 亚洲看片网站 | 日韩aaaa | 91精品国产一区二区 | 日韩手机在线 | 久久久久国产精品免费免费搜索 | 9191视频 | 四虎成人在线视频 | 一区二区精品 | 亚洲第一福利视频 | 日韩欧美一区二区三区免费观看 | 亚洲精品不卡 | 欧洲亚洲精品久久久久 | y111111国产精品久久婷婷 | 草久久久 | 国产不卡一区在线观看 | 亚洲青草 | 国产一区二区三区久久久久久久久 | 日韩黄色在线观看 | 日本亚洲欧美 | 亚洲国产成人在线 | 日韩欧美在线免费观看 | www.久久精品 | 精品免费在线 | 欧美日韩一级视频 | 亚洲永久免费 | 午夜精品福利一区二区三区蜜桃 | av资源中文在线 | 日韩福利| 国产色在线 | 国产精品一区二区免费视频 |