日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.
【答案】分析:(Ⅰ)觀察數列特點看元素是否按次序對應相等即看判斷數列是否為5階可重復數列;
(Ⅱ)數為m的數列{an}一定是3階可重復數列,數列的每一項只可以是0或1,則連續3項共有8種不同的情況,m=11數列有九組連續3項,m=10不是3階可重復數列,而3≤m<10時,均存在不是“3階可重復數列”的數列,要使數列一定是3階可重復數列m的最小值必須是11;
(Ⅲ)利用反證法證明a4=am=1.假設如果a1,a2,a3,a4與am-3,am-2,am-1,am不能按次序對應相等,那么必有2≤i,j≤m-4,i≠j,使得ai,ai+1,ai+2,ai+3、aj,aj+1,aj+2,aj+3與am-3,am-2,am-1,am按次序對應相等.考慮ai-1,aj-1和am-4,其中必有兩個相同,這就導致數列{an}中有兩個連續的五項恰按次序對應相等,從而數列{an}是“5階可重復數列”,這和題設中數列{an}不是“5階可重復數列”矛盾得證.
解答:解:(Ⅰ)記數列①為{bn},因為b2,b3,b4,b5,b6與b6,b7,b8,b9,b10按次序對應相等,
所以數列①是“5階可重復數列”,重復的這五項為0,0,1,1,0;
記數列②為{cn},因為c1,c2,c3,c4,c5、c2,c3,c4,c5,c6、c3,c4,c5,c6,c7、c4,c5,c6,c7,c8、c5,c6,c7,c8,c9、c6,c7,c8,c9,c10沒有完全相同的,所以{cn}不是“5階可重復數列”.
(Ⅱ)因為數列{an}的每一項只可以是0或1,所以連續3項共有23=8種不同的情形.
若m=11,則數列{an}中有9組連續3項,則這其中至少有兩組按次序對應相等,即項數為11的數列{an}一定是“3階可重復數列”;若m=10,數列0,0,1,0,1,1,1,0,0,0不是“3階可重復數列”;則3≤m<10時,
均存在不是“3階可重復數列”的數列{an}.
所以,要使數列{an}一定是“3階可重復數列”,則m的最小值是11.
(Ⅲ)由于數列{an}在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,即在數列{an}的末項am后再添加一項0或1,則存在i≠j,使得ai,ai+1,ai+2,ai+3,ai+4與am-3,am-2,am-1,am,0按次序對應相等,或aj,aj+1,aj+2,aj+3,aj+4與am-3,am-2,am-1,am,1按次序對應相等,
如果a1,a2,a3,a4與am-3,am-2,am-1,am不能按次序對應相等,那么必有2≤i,j≤m-4,i≠j,使得ai,ai+1,ai+2,ai+3、aj,aj+1,aj+2,aj+3與am-3,am-2,am-1,am按次序對應相等.
此時考慮ai-1,aj-1和am-4,其中必有兩個相同,這就導致數列{an}中有兩個連續的五項恰按次序對應相等,從而數列{an}是“5階可重復數列”,這和題設中數列{an}不是“5階可重復數列”矛盾;
所以a1,a2,a3,a4與am-3,am-2,am-1,am按次序對應相等,
從而am=a4=1.
點評:考查學生理解數列概念,靈活運用數列表示法的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

15、給定項數為m (m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,3,…,m),這樣的數列叫”0-1數列”.若存在一個正整數k (2≤k≤m-1),使得數列{an}中某連續k項與該數列中另一個連續k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”.例如數列{an}:0,1,1,0,1,1,0,因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(1)已知數列{bn}:0,0,0,1,1,0,0,1,1,0,則該數列
“5階可重復數列”(填“是”或“不是”);
(2)要使項數為m的所有”0-1數列”都為“2階可重復數列”,則m的最小值是
6

查看答案和解析>>

科目:高中數學 來源: 題型:

4、給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•武漢模擬)給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”.例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,數列{an}的最后一項am=
1
1

查看答案和解析>>

科目:高中數學 來源:2010年高考數學專項復習:創新題(2)(解析版) 題型:解答題

給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲国产精品久久久久久 | 国产做a | 欧美日韩在线看 | 欧美日韩国产成人在线 | 亚洲精品无 | 亚洲国产午夜视频 | 免费欧美一级 | 九九热re | 国产一区成人 | 欧美日韩一区二区三区在线观看 | 最新日韩一区 | 毛片黄色 | 婷婷精品在线 | 中文字幕在线电影观看 | 日韩色区 | 欧美精品一区二区三区免费视频 | 国产九九av | 女女野外嗯啊高潮h百合扶她 | 国产精品九九九 | 超碰在线99 | 免费一区二区三区 | 粉嫩高清一区二区三区精品视频 | 国产欧美一区在线 | 日本在线视频一区二区三区 | 欧美精品一区视频 | 国产精品国产a级 | 国产精品欧美久久久久一区二区 | 日本高清视频在线 | 福利视频一区二区三区 | 国产精品毛片一区二区三区 | 99精彩视频| 亚洲精品美女视频 | 精品日韩一区二区 | 亚洲成人在线视频观看 | 欧美精品第十页 | 国产精品久久久久久一区二区三区 | 激情91| 国产精品自产拍在线观看 | 大胆裸体gogo毛片免费看 | 午夜精品一区二区三区在线 | 视色网站 |