【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數記錄結果中隨機抽取10天的數據,整理如下:
甲公司員工:410,390,330,360,320,400,330,340,370,350
乙公司員工:360,420,370,360,420,340,440,370,360,420
每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規定每件0.65元,乙公司規定每天350件以內(含350件)的部分每件0.6元,超出350件的部分每件0.9元.
(1)根據題中數據寫出甲公司員工在這10天投遞的快件個數的平均數和眾數;
(2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為
(單位:元),求
的分布列和數學期望;
(3)根據題中數據估算兩公司被抽取員工在該月所得的勞務費.
【答案】(1)平均數為360,眾數為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)
【解析】
(1)將圖中甲公司員工A的所有數據相加,再除以總的天數10,即可求出甲公司員工A投遞快遞件數的平均數.從中發現330出現的次數最多,故為眾數;
(2)由題意能求出的可能取值為340,360,370,420,440,分別求出相對應的概率,由此能求出
的分布列和數學期望;
(3)利用(1)(2)的結果,可估算兩公司的每位員工在該月所得的勞務費.
解:(1)由題意知
甲公司員工在這10天投遞的快遞件數的平均數為
.
眾數為330.
(2)設乙公司員工1天的投遞件數為隨機變量
,則
當時,
當時,
當時,
當時,
當時,
的分布列為
204 | 219 | 228 | 273 | 291 | |
(元);
(3)由(1)估計甲公司被抽取員工在該月所得的勞務費為
(元)
由(2)估計乙公司被抽取員工在該月所得的勞務費為
(元).
科目:高中數學 來源: 題型:
【題目】已知數列{}的首項a1=2,前n項和為
,且數列{
}是以
為公差的等差數列·
(1)求數列{}的通項公式;
(2)設,
,數列{
}的前n項和為
,
①求證:數列{}為等比數列,
②若存在整數m,n(m>n>1),使得,其中
為常數,且
-2,求
的所有可能值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某射擊運動員在比賽前進行三周的封閉訓練,教練員將其每天成績的均值數據整理,并繪成條形圖如下,
根據該圖,下列說法錯誤的是:( )
A.第三周平均成績最好B.第一周平均成績比第二平均成績好
C.第一周成績波動較大D.第三周成績比較穩定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記無窮數列的前n項
,
,…,
的最大項為
,第n項之后的各項
,
,…的最小項為
,
.
(1)若數列的通項公式為
,寫出
,
,
;
(2)若數列的通項公式為
,判斷
是否為等差數列,若是,求出公差;若不是,請說明理由;
(3)若數列為公差大于零的等差數列,求證:
是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數x與燒開一壺水所用時間y的一組數據,且作了一定的數據處理(如表),得到了散點圖(如圖).
表中,
.
(1)根據散點圖判斷,與
哪一個更適宜作燒水時間y關于開關旋鈕旋轉的弧度數x的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立y關于x的回歸方程;
(3)若旋轉的弧度數x與單位時間內煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?
附:對于一組數據,
,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com