日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=|x-a|-ax,其中a為大于零的常數.
(1)解不等式:f(x)<0;
(2)若0≤x≤2時,不等式f(x)≥-2恒成立,求實數a的取值范圍.
分析:(1)把f(x)的解析式代入到f(x)<0得到一個不等式,當x小于等于0時得到不等式不成立;當x大于0時,對不等式的兩邊分別平方,移項后利用平方差公式分解因式,分a大于1,a等于1,a大于0小于1三種情況分別求出不等式的解集即可;
(2)把f(x)的解析式代入到f(x)≥-2得到一個不等式,當a小于1大于01時,由0≤x≤2,得到ax-2小于等于0,原不等式恒成立;當a大于1時,分兩種情況去掉絕對值號,然后把x等于2分別代入到化簡的不等式中,得到關于a的兩個不等式,分別求出解集與a大于1求出交集即可得到實數a的范圍,綜上,把兩種情況求出的a的范圍求出并集即可得到所有滿足題意的a的范圍.
解答:解:(1)不等式即為|x-a|<ax,
若x≤0,則ax≤0,故不等式不成立;
若x>0,不等式化為(x-a)2<a2x2,即[(1+a)x-a][(1-a)x-a]<0,
∴當a>1時,x
a
1+a
或x
a
1-a
(舍);
當a=1時,x
1
2

當0<a<1時,
a
1+a
<x<
a
1-a

綜上可得,當a>1時,不等式解集為{x|x>
a
1+a
};
當a=1時,不等式的解集為{x|x
1
2
};當0<a<1時,不等式解集為{x|
a
1+a
<x<
a
1-a
};

(2)不等式即為|x-a|≥ax-2,
若0<a≤1,則當0≤x≤2時有ax-2≤0,故不等式|x-a|≥ax-2恒成立.
若a>1,則x-a≥ax-2或x-a≤2-ax對任意x∈[0,2]恒成立,
即(1-a)x+2-a≥0或(1+a)x-a-2≤0對任意x∈[0,2]恒成立,
所以(1-a)•2+2-a≥0或(1+a)•2-a-2≤0,
解得a≤
4
3
或a≤0,
∴1<a≤
4
3

綜上,實數a的取值范圍為(0,
4
3
].
點評:此題考查了其他不等式的解法,分類討論的數學思想,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為A,若存在非零實數t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調函數.如果定義域為[0,+∞)的函數f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調函數,那么實數m的取值范圍是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)是定義在R上的偶函數,且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數為(  )

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 直接在线观看的三级网址 | 久久久久久午夜 | 激情视频网站 | 欧洲尺码日本国产精品 | 最新日韩精品在线观看 | 九九热在线免费观看 | 在线播放国产一区二区三区 | 国产精品网址 | 在线观看亚洲精品视频 | 日本免费xxxx| 日本不卡免费新一二三区 | 国产精品国产成人国产三级 | www日本高清视频 | 一区二区在线播放视频 | 日韩亚洲精品在线观看 | 超碰人人草 | 久久国产欧美一区二区三区精品 | 在线播放国产精品 | 国产精品成人久久久久 | 精品96久久久久久中文字幕无 | 国产黄色在线播放 | 国产亚洲精品精品国产亚洲综合 | 成人在线播放 | 欧美一级精品片在线看 | 亚洲视频在线观看网站 | 亚洲精品久久久 | 国产精品一区欧美 | 国产成人aaa | 久久久精品网站 | 中文字字幕在线 | 久热中文在线 | 中文字幕色婷婷在线视频 | 久久精品色欧美aⅴ一区二区 | 五月婷久久 | 日韩色av | 久久免费视频3 | 久久99国产一区二区三区 | 国产精品久久久久久久久久免费看 | 日日做夜夜操 | 中文字幕 欧美 日韩 | 一区二区精品 |