【題目】在平面直角坐標系中,已知圓C滿足:圓心在
軸上,且與圓
相外切.設圓C與
軸的交點為M,N,若圓心C在
軸上運動時,在
軸正半軸上總存在定點
,使得
為定值,則點
的縱坐標為_________.
科目:高中數學 來源: 題型:
【題目】在正方體ABCDA1B1C1D1中,E,F分別為棱AA1,CC1的中點,則在空間中與三條直線A1D1,EF,CD都相交的直線( )
A.不存在B.有且只有兩條C.有且只有三條D.有無數條
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,點
,
是圓上一動點,點
在線段
上,點
在半徑
上,且滿足
.
(1)當在圓上運動時,求點
的軌跡
的方程;
(2)設過點的直線
與軌跡
交于點
(
不在
軸上),垂直于
的直線交
于點
,與
軸交于點
,若
,求點
橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出曲線的極坐標方程,并求出曲線
與
公共弦所在直線的極坐標方程;
(2)若射線與曲線
交于
兩點,與曲線
交于
點,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在菱形中,
沿對角線
將△
折起,使
之間的距離為
若
分別為線段
上的動點
(1)求線段長度的最小值;
(2)當線段長度最小時,求直線
與平面
所成角的正弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年9月26日,攜程網發布《2019國慶假期旅游出行趨勢預測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規定:若公司某位導游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導游為優秀導游.經驗表明,如果公司的優秀導游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導游40名,統計他們一年內旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數分布表如下:
(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?
(2)求甲公司一年內導游旅游總收入的中位數,乙公司一年內導游旅游總收入的平均數.(同一組中的數據用該組區間的中點值為代表).(精確到0.01)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓
的右焦點為
,離心率為
,過點
的直線
與
相交于
兩點,點
為線段
的中點.
(1)當的傾斜角為
時,求直線
的方程;
(2)試探究在軸上是否存在定點
,使得
為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com