(本題滿分15分)
已知函數(shù).
(Ⅰ)若無極值點(diǎn),但其導(dǎo)函數(shù)
有零點(diǎn),求
的值;
(Ⅱ)若有兩個(gè)極值點(diǎn),求
的取值范圍,并證明
的極小值小于
.
解 (Ⅰ)首先,
--------1分
---------------3分
有零點(diǎn)而
無極值點(diǎn),表明該零點(diǎn)左右
同號,故
,
且的
由此可得
----------6分
(Ⅱ)由題意,有兩不同的正根,故
.
解得:
----------------8分
設(shè)的兩根為
,不妨設(shè)
,因?yàn)樵趨^(qū)間
上,
,而在區(qū)間
上,
,故
是
的極小值點(diǎn).-------10分
因在區(qū)間
上
是減函數(shù),如能證明
則更有
---------------13分
由韋達(dá)定理,,
令其中
設(shè)
,利用導(dǎo)數(shù)容易證明
當(dāng)
時(shí)單調(diào)遞減,
而,因此
,即
的極小值
-------15分
(Ⅱ)另證:實(shí)際上,我們可以用反代的方式證明的極值均小于
.
由于兩個(gè)極值點(diǎn)是方程的兩個(gè)正根,所以反過來,
(用表示
的關(guān)系式與此相同),這樣
即,再證明該式小于
是容易的(注意
,下略).
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題滿分15分)
某有獎(jiǎng)銷售將商品的售價(jià)提高120元后允許顧客有3次抽獎(jiǎng)的機(jī)會,每次抽獎(jiǎng)的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機(jī)產(chǎn)生一個(gè) 1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎(jiǎng),每次中獎(jiǎng)的獎(jiǎng)金為100元,運(yùn)用所學(xué)的知識說明這樣的活動(dòng)對商家是否有利。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)設(shè)函數(shù).
(Ⅰ)若函數(shù)在
上單調(diào)遞增,在
上單調(diào)遞減,求實(shí)數(shù)
的最大值;
(Ⅱ)若對任意的
,
都成立,求實(shí)數(shù)
的取值范圍.
注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知直線與曲線
相切
1)求b的值;
2)若方程在
上恰有兩個(gè)不等的實(shí)數(shù)根
,求
①m的取值范圍;
②比較的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知拋物線:
(
),焦點(diǎn)為
,直線
交拋物線
于
、
兩點(diǎn),
是線段
的中點(diǎn),
過作
軸的垂線交拋物線
于點(diǎn)
,
(1)若拋物線上有一點(diǎn)
到焦點(diǎn)
的距離為
,求此時(shí)
的值;
(2)是否存在實(shí)數(shù),使
是以
為直角頂點(diǎn)的直角三角形?若存在,求出
的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題
(本題滿分15分)
已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)設(shè),若
在
上不單調(diào)且僅在
處取得最大值,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com