分析 (1)根據三角函數的輔助角公式進行化簡結合三角函數的性質進行求解即可.
(2)求出角的范圍結合三角函數的單調性和值域之間的關系進行求解即可.
解答 解:(1)由題f(x)可化為$f(x)=1+cos2x+\sqrt{3}sin2x=2sin({2x+\frac{π}{6}})+1$…(3分)
所以最小正周期T=π…(4分)
令$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ({k∈Z})$,
則$-\frac{π}{3}+kπ≤x≤\frac{π}{6}+kπ({k∈Z})$,
所以f(x)的單調遞增區間為$[{-\frac{π}{3}+kπ,\frac{π}{6}+kπ}],({k∈Z})$…(6分)
(2)當x∈($\frac{π}{12}$,$\frac{π}{3}$)時,$2x+\frac{π}{6}∈({\frac{π}{3},\frac{5π}{6}})$,
由正弦圖象可得$\frac{1}{2}<sin({2x+\frac{π}{6}})≤1$,…(10分)
所以2<f(x)≤3
所以f(x)的值域為(2,3]…(12分)
點評 本題主要考查三角函數圖象和性質的考查,利用輔助角公式進行化簡是解決本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $4+\sqrt{7}$ | B. | $4-\sqrt{3}$ | C. | $4+\sqrt{3}$ | D. | $4-\sqrt{7}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com