(本題滿分12分)如圖,橢圓C方程為 (
),點
為橢圓C的左、右頂點。
(1)若橢圓C上的點到焦點的距離的最大值為3,最小值為1,求橢圓的標準方程;
(2)若直線與(1)中所述橢圓C相交于A、B兩點(A、B不是左、右頂點),且滿足
,求證:直線
過定點,并求出該點的坐標。
科目:高中數學 來源: 題型:解答題
設橢圓:
的左、右焦點分別為
,已知橢圓
上的任意一點
,滿足
,過
作垂直于橢圓長軸的弦長為3.
(1)求橢圓的方程;
(2)若過的直線交橢圓于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分為12分)
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為.
(I)求橢圓方程;
(II)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F1是橢圓的左焦點;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求
ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=
,求cos
的值及
PF1F2的面積。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題12分)已知橢圓的離心率為
,
為橢圓的右焦點,
兩點在橢圓
上,且
,定點
。
(1)若時,有
,求橢圓
的方程;
(2)在條件(1)所確定的橢圓下,當動直線
斜率為k,且設
時,試求
關于S的函數表達式f(s)的最大值,以及此時
兩點所在的直線方程。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com