(本小題滿分13分)如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF^PB交PB于點(diǎn)F,
(1)求證:PA//平面EDB;
(2)求證:PB^平面EFD;
(3)求二面角C-PB-D的大小。
解:如右圖所示建立空間直角坐標(biāo)系,點(diǎn)D為坐標(biāo)原點(diǎn),設(shè)DC=1。
(1)證明:連結(jié)AC, AC交BD于點(diǎn)G,連結(jié)EG.
依題意得A(1,0,0),P(0,0,1),E(0,,
).
因?yàn)榈酌鍭BCD是正方形,所以點(diǎn)G是此正
方形的中心,故點(diǎn)G的坐標(biāo)為(,
,0),
且=(1,0,-1),
=(
,0,-
).
所以=2
,即PA//EG.
而EGÌ平面EDB, 且PAË平面EDB,
因此PA//平面EDB.……………………4分
(2)證明:依題意得
B(1, 1, 0),=(1,1, -1)
又=(0,
,
),
故×
=0+
-
=0,所以PB^DE.
由已知EF^PB,且EF∩DE=E,所以PB^平面EFD.………………8分
(3)解:已知PB^EF,由(2)可知PB^DF,故ÐEFD是二面角C-PB-D的平面角,設(shè)點(diǎn)F的坐標(biāo)為(x,y,z),則=(x, y, z–1).
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052203254626562884/SYS201205220327005156360054_DA.files/image007.png">=k,
所以(x, y, z-1)=k(1, 1, -1)=(k, k, -k),即x=k,y=k,z=1-k.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052203254626562884/SYS201205220327005156360054_DA.files/image007.png">•=0,
所以(1, 1, -1) • (k, k, 1-k)=k+k-1+k=3k-1=0.
所以k=,點(diǎn)F的坐標(biāo)為(
,
,
).
又點(diǎn)E的坐標(biāo)為(0, ,
).
所以=(-
,
,–
).
所以ÐEFD=60°,即二面角C-PB-D的大小為60°。………………13分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間
上的圖象.
(3)設(shè)0<x<,且方程
有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)
的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合,
,
.
(1)求(∁
; (2)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,
為
的中點(diǎn)。
(Ⅰ)求證:∥平面
;
(Ⅱ)求異面直線與
所成的角。www.7caiedu.cn
[來(lái)源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且
,函數(shù)
,數(shù)列{
}的首項(xiàng)
.
(1) 求函數(shù)的表達(dá)式;
(2)在中,若
A=2
,
,BC=2,求
的面積
(3) 求數(shù)列的前
項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com