【題目】已知圓C過兩點A(0,4),B(4,6),且圓心在直線x﹣2y﹣2=0上.
(1)求圓C的方程;
(2)若直線l過原點且被圓C截得的弦長為6,求直線l的方程.
【答案】(1)(x﹣4)2+(y﹣1)2=25(2)x=0或15x+8y=0
【解析】
(1)線段的垂直平分線為
與直線
聯(lián)立,求出圓心坐標(biāo),半徑,即可求圓
的方程;
(2)分類討論,求出圓心到直線
的距離,利用直線
過原點且被圓
截得的弦長為6,結(jié)合勾股定理,求出
,即可求直線
的方程.
解:(1)線段的垂直平分線為
與直線
聯(lián)立
可得圓心,
半徑
,
故所求圓的標(biāo)準(zhǔn)方程為
.
(2)當(dāng)直線的斜率不存在時,
顯然滿足題意;
當(dāng)直線的斜率存在時,設(shè)直線
,
弦長為6,
圓心
到直線
的距離
,
即,解得
,此時直線
,
故所求直線的方程為
或
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等腰直角三角形中,
,點
在邊
上,
垂直
交
于
,如圖①.將
沿
折起,使
到達(dá)
的位置,且使平面
平面
,連接
,
,如圖②.
(Ⅰ)若為
的中點,
,求證:
;
(Ⅱ)若,當(dāng)三棱錐
的體積最大時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列中,
,
.令
,數(shù)列
的前
項和為
.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前
項和
;
(3)是否存在正整數(shù),(
),使得
,
,
成等比數(shù)列?若存在,求出所有的
,
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】司機在開機動車時使用手機是違法行為,會存在嚴(yán)重的安全隱患,危及自己和他人的生命. 為了研究司機開車時使用手機的情況,交警部門調(diào)查了名機動車司機,得到以下統(tǒng)計:在
名男性司機中,開車時使用手機的有
人,開車時不使用手機的有
人;在
名女性司機中,開車時使用手機的有
人,開車時不使用手機的有
人.
(1)完成下面的列聯(lián)表,并判斷是否有
的把握認(rèn)為開車時使用手機與司機的性別有關(guān);
開車時使用手機 | 開車時不使用手機 | 合計 | |
男性司機人數(shù) | |||
女性司機人數(shù) | |||
合計 |
(2)以上述的樣本數(shù)據(jù)來估計總體,現(xiàn)交警部門從道路上行駛的大量機動車中隨機抽檢3輛,記這3輛車中司機為男性且開車時使用手機的車輛數(shù)為,若每次抽檢的結(jié)果都相互獨立,求
的分布列和數(shù)學(xué)期望
.
參考公式與數(shù)據(jù):
參考數(shù)據(jù):
參考公式
span>,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在直角梯形ABCD中,AD=1,AD∥BC,AB⊥BC,BD⊥DC,點E是BC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖②所示的幾何體.
(1)求證:AB⊥平面ADC;
(2)若AC與平面ABD所成角的正切值為,求二面角B—AD—E的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】河北省高考改革后高中學(xué)生實施選課走班制,若某校學(xué)生選擇物理學(xué)科的人數(shù)為800人,高二期中測試后,由學(xué)生的物理成績,調(diào)研選課走班制學(xué)生的學(xué)習(xí)情況及效果,為此決定從這800人中抽取人,其頻率分布情況如下:
分?jǐn)?shù) | 頻數(shù) | 頻率 |
8 | 0.08 | |
18 | 0.18 | |
20 | 0.2 | |
0.24 | ||
15 | ||
10 | 0.10 | |
5 | 0.05 | |
合計 | 1 |
(1)計算表格中,
,
的值;
(2)為了了解成績在,
分?jǐn)?shù)段學(xué)生的情況,先決定利用分層抽樣的方法從這兩個分?jǐn)?shù)段中抽取6人,再從這6人中隨機抽取2人進行面談,求2人來自不同分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
分別為橢圓
:
的左右焦點,已知橢圓
上的點
到焦點
,
的距離之和為4.
(1)求橢圓的方程;
(2)過點作直線交橢圓
于
,
兩點,線段
的中點為
,連結(jié)
并延長交橢圓于點
(
為坐標(biāo)原點),若
,
,
等比數(shù)列,求線段
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);
.
(1)判斷在
上的單調(diào)性,并說明理由;
(2)求的極值;
(3)當(dāng)時,
,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com