(本小題滿分12分)
如圖,在四棱錐P-ABCD中,則面PAD⊥底面ABCD,側棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的大小;
(Ⅲ)線段AD上是否存在點Q,使得它到平面PCD的距離為?若存在,求出
的值;若不存在,請說明理由.
在Rt△POA中,因為AP=
,AO=1,所以OP=1,
在Rt△PBO中,tan∠PBO=
所以異面直線PB與CD所成的角是.
(Ⅲ)假設存在點Q,使得它到平面PCD的距離為.
設QD=x,則,由(Ⅱ)得CD=OB=
,
在Rt△POC中,
所以PC=CD=DP,
由Vp-DQC=VQ-PCD,得2,所以存在點Q滿足題意,此時
.
解法二:(Ⅰ)同解法一.
(Ⅱ)以O為坐標原點,的方向分別為x軸、y軸、z軸的正方向,建
立空間直角坐標系O-xyz,依題意,易得
A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1),
所以
所以異面直線PB與CD所成的角是arccos,
(Ⅲ)假設存在點Q,使得它到平面PCD的距離為,
由(Ⅱ)知
設平面PCD的法向量為n=(x0,y0,z0).
則所以
即
,
取x0=1,得平面PCD的一個法向量為n=(1,1,1).
設由
,得
解y=-
或y=
(舍去),
此時,所以存在點Q滿足題意,此時
.
解析
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com