【題目】10名象棋選手進行單循環賽(即每兩名選手比賽一場).規定兩人對局勝者得2分,平局各得1分,負者得0分,并按總得分由高到低進行排序.比賽結束后,10名選手的得分各不相同,且第二名的得分是最后五名選手得分之和的.則第二名選手的得分是____.
科目:高中數學 來源: 題型:
【題目】某校象棋社團組織中國象棋比賽,采用單循環賽制,即要求每個參賽選手必須且只須和其他選手各比賽一場,勝者得分,負者得
分,平局兩人各得
分.若冠軍獲得者得分比其他人都多,且獲勝場次比其他人都少,則本次比賽的參賽人數至少為
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程(t為參數),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為:
.
Ⅰ
直線l的參數方程化為極坐標方程;
Ⅱ
求直線l與曲線C交點的極坐標
其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x),若f(x0)=x0,則稱x0為f(x)的不動點.設f(x)=x3+ax2+bx+3.
(1)當a=0時,
(i)求f(x)的極值點;
(ⅱ)若存在x0既是f(x)的極值點,也是f(x)的不動點,求b的值;
(2)是否存在a,b,使得f(x)有兩個極值點,且這兩個極值點均為f(x)的不動點?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,
分別在
軸,
軸上運動,
,點
在線段
上,且
.
(1)求點的軌跡
的方程;
(2)直線與
交于
,
兩點,
,若直線
,
的斜率之和為2,直線
是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數之比為,且成績分布在
,分數在
以上(含
)的同學獲獎. 按文理科用分層抽樣的方法抽取
人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).
(I)在答題卡上填寫下面的列聯表,能否有超過
的把握認為“獲獎與學生的文理科有關”?
文科生 | 理科生 | 合計 | |
獲獎 | |||
不獲獎 | |||
合計 |
(II)將上述調査所得的頻率視為概率,現從該校參與競賽的學生中,任意抽取名學生,記“獲獎”學生人數為
,求
的分布列及數學期望.
附表及公式:,其中
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com