日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

若數(shù)列{an}的前n項(xiàng)和Sn是(1+x)n二項(xiàng)展開式中各項(xiàng)系數(shù)的和(n=1,2,3,…).
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足b1=-1,bn+1=bn+(2n-1),且cn=
anbnn
,求數(shù)列{cn}的通項(xiàng)及其前n項(xiàng)和Tn
分析:(Ⅰ)由題意Sn=2n,由項(xiàng)與前n項(xiàng)和的關(guān)系an=
s1        n=1
sn-sn-1  n≥2
得{an}的通項(xiàng)公式;
(Ⅱ)由bn+1=bn+(2n-1)得bn+1-bn=2n-1,令n=1、2、3、…n-1得n-1個(gè)式子,以上各式相加得bn-b1=1+3+5+…+(2n-3),可求bn=n2-2n,進(jìn)而求cn,由錯(cuò)位相減法得數(shù)列{cn}的通項(xiàng)及其前n項(xiàng)和Tn
解答:解:(Ⅰ)由題意Sn=2n,Sn-1=2n-1(n≥2),
兩式相減得an=2n-2n-1=2n-1(n≥2).
當(dāng)n=1時(shí),a1=S1=2,
∴an=
2       n=1
2n-1   n≥2

(Ⅱ)∵bn+1=bn+(2n-1),
∴bn-bn-1=2n-3
bn-1-bn-2=2n-5

b4-b3=5
b3-b2=3
b2-b1=1,
以上各式相加得bn-b1=1+3+5+…+(2n-3)
=
(n-1)(1+2n+3)
2
=(n-1)2
∵b1=-1,∴bn=n2-2n.
cn=
-2,n=1
(n-2)×2n-1,n≥2

∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1
∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n
∴-Tn=2+22+23+…+2n-1-(n-2)×2n
=
2(1-2n-1)
1-2
-(n-2)×2n

=2n-2-(n-2)×2n=-2-(n-3)×2n
∴Tn=2+(n-3)×2n
點(diǎn)評(píng):應(yīng)用項(xiàng)與前n項(xiàng)和之間的關(guān)系時(shí),注意n=1的時(shí)候;求通項(xiàng)公式,若兩項(xiàng)之差為n的一次式,可用累加法;用錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,用時(shí)要觀察項(xiàng)的特征,是否是等差數(shù)列的項(xiàng)與等比數(shù)列的項(xiàng)的乘積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函數(shù)y=log
12
x
的圖象上.
(Ⅰ)若數(shù)列{bn}是等差數(shù)列,求證數(shù)列{an}為等比數(shù)列;
(Ⅱ)若數(shù)列{an}的前n項(xiàng)和為Sn=1-2-n,過點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍成三角形面積為cn,求使cn≤t對(duì)n∈N*恒成立的實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下有四種說法:
(1)若p∨q為真,p∧q為假,則p與q必為一真一假;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*
(3)若f′(x0)=0,則f(x)在x=x0處取得極值;
(4)由變量x和y的數(shù)據(jù)得到其回歸直線方程l: 
y
=bx+a
,則l一定經(jīng)過點(diǎn)P(
.
x
, 
.
y
)

以上四種說法,其中正確說法的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,則下列命題:
(1)若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列;
(2)數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項(xiàng)均為正數(shù);
(3)若{an}是等差數(shù)列(公差d≠0),則S1•S2…Sk=0的充要條件是a1•a2…ak=0.
(4)若{an}是等比數(shù)列,則S1•S2…Sk=0(k≥2,k∈N)的充要條件是an+an+1=0.
其中,正確命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,且有4Sn=an2+4n-1,n∈N*
(1)求a1的值;
(2)求證:(an-2)2-an-12=0(n≥2)
(3)求出所有滿足條件的數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(x,y)是區(qū)域
x+2y≤2n
x≥0
y≥0
,(n∈N*)內(nèi)的點(diǎn),目標(biāo)函數(shù)z=x+y,z的最大值記作zn.若數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且點(diǎn)(Sn,an)在直線zn=x+y上.
(Ⅰ)證明:數(shù)列{an-2}為等比數(shù)列;
(Ⅱ)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 不卡久久 | 欧美日韩一区二区视频在线观看 | 色丁香婷婷| 欧日韩免费 | av电影天堂网 | xxxx爽日本hd18乱禁 | 久久亚洲国产 | 久久99精品国产91久久来源 | 欧美日韩一区二区三区免费视频 | 国产精品一区人伦免视频播放 | 在线看av网址| 黄色的网站在线免费观看 | 亚洲免费精品 | 欧美日韩艺术电影在线 | 日韩欧美在线观看视频网站 | 久久首页| 久草福利在线视频 | 91精品国产综合久久久久久漫画 | 久久毛片 | 精品国产一区二区三区久久久蜜月 | 国产网址 | 老汉色影院 | 亚洲第一视频 | 狠狠干av| 可以看黄的视频 | 国产亚洲成av人片在线观看桃 | 先锋影音在线 | 久久国产精品成人免费观看的软件 | 国产精品入口久久 | 先锋资源中文字幕 | 销魂美女一区二区三区视频在线 | 婷婷成人在线 | 中文字幕在线一区 | 国产精品久久久久无码av | 天天操天天干天天干 | 久久高清一区 | 成人精品一区二区三区中文字幕 | 欧美视频在线观看 | 天天摸夜夜摸爽爽狠狠婷婷97 | 欧美国产日韩视频 | 夜添久久精品亚洲国产精品 |