日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
18.已知函數f(x)對一切實數x,y都滿足f(x+y)=f(y)+(x+2y+1)x,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)當x∈[0,$\frac{1}{2}$]時,f(x)+3<2x+a恒成立,求a的范圍.

分析 (1)利用賦值法,令x=1,y=0帶入計算即可.
(2)令y=0,帶入化簡即可得到f(x)的解析式;
(3)采用參數分離,利用函數單調性求解.

解答 解:由題意:函數f(x)對一切實數x,y都滿足f(x+y)=f(y)+(x+2y+1)x,且f(1)=0
(1)利用賦值法,令x=1,y=0,帶入f(x+y)=f(y)+(x+2y+1)x.
可得:f(1)=f(0)+(1+2×0+1)×1.
∴f(0)=-2
(2)令y=0,帶入f(x+y)=f(y)+(x+2y+1)x.
整理可得:f(x)=f(0)+(x+1)x
=x2+x-2
所以f(x)的解析式為:f(x)=x2+x-2.
(3)當x∈[0,$\frac{1}{2}$]時,f(x)+3<2x+a恒成立,等價于:(x2-x+1)max<a恒成立,
令g(x)=x2-x+1,
開口向上,對稱軸x=$\frac{1}{2}$,
當x∈[0,$\frac{1}{2}$]時,g(x)是單調減函數.
∴x=0時g(x)取得最大值,即g(0)max=1.
∴a>1.
所以a的范圍是(1,+∞).

點評 本題考查了抽象函數的解析式求法和利用單調性解決恒成立的問題.利用了賦值法.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

8.下列命題中正確的有(  )
①設有一個回歸方程$\widehaty$=2-3x,變量x增加一個單位時,y平均增加3個單位;
②命題P:“?x0∈R,x02-x0-1>0”的否定?P:“?x∈R,x2-x-1≤0”;
③“命題p或q為真”是“命題p且q為真”必要不充分條件;
④在一個2×2列聯表中,由計算得k2=6.679,則有99.9%的把握確認這兩個變量間有關系.
本題可以參考獨立性檢驗臨界值表
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.5357.87910.828
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知關于x的二次函數f(x)=x2-2sinθx+$\frac{1}{4}$,(θ∈R).
(1)若θ=$\frac{π}{6}$,求函數f(x)在x∈[-1,1]上的值域;
(2)若函數f(x)在區間[-$\frac{1}{2}$,$\frac{1}{2}}$]上是單調函數,求θ的取值集合;
(3)若對任意x1,x2,∈[2,3],總有|f(x1)-f(x2)|≤2sinθt2+8t+5對任意θ∈R恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.設△ABC的內角為A,B,C,所對的邊分別是a,b,c.若(a+b)2-c2=ab,則角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.若a=log0.22,b=log0.23,c=20.2,則(  )
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知函數f(x)=4x2-mx+1,在(-∞,-2]上遞減,在[-2,+∞)上遞增,則f(x)在[1,2]上的值域為[21,49].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知數列{an}滿足:a1=-$\frac{5}{3}$,3Sn=-1-an+1
(1)求a2,a3;
(2)求數列{an}的通項公式;
(3)記bn=an2+an,求證:$\frac{1}{b_2}$+$\frac{1}{b_3}$+$\frac{1}{b_4}$+…+$\frac{1}{b_n}$<$\frac{1}{10}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.已知函數f(x)由如表給出,則f(f(3))=1.
x-113
f(x)10-1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.已知平面直角坐標系內的兩個向量,$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m,3m-2),且平面內的任一向量$\overrightarrow{c}$都可以唯一的表示成$\overrightarrow{c}$=λ$\overrightarrow{a}$+$μ\overrightarrow$(λ,μ為實數),則m的取值范圍是(-∞,2)∪(2,+∞).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 三级在线看 | 一区视频在线 | 黄色大片免费观看 | 欧美国产精品 | 91成人在线 | 欧美视频一二三区 | 欧美在线日韩 | 四虎4hu永久免费网站影院 | www.com国产| 午夜免费观看视频 | 特级丰满少妇一级aaaa爱毛片 | 青久久 | 高清免费av | 国产黄色精品 | 一区二区三区影院 | 成年人免费视频网站 | 五月开心激情网 | 国产精品成人国产乱一区 | av观看网站 | 国产成人精品三级麻豆 | 国产主播精品 | 欧美大白屁股 | 精品国产一二三 | 欧美三级三级三级爽爽爽 | 精品一区二区三区四区五区 | 国产成人精品一区二区三区福利 | 中文字幕观看 | 亚洲视频一区在线观看 | 久久精品免费看 | 久久久久婷婷 | 手机看片福利视频 | 超碰人人网 | 久久亚洲国产精品 | 国产手机在线视频 | 久久伊人网站 | 伊人成人在线视频 | 五月激情网站 | 一区二区三区在线观看视频 | 日本一级大毛片a一 | 性做久久久 | 日韩av手机在线 |