【題目】軍訓時,甲、乙兩名同學進行射擊比賽,共比賽10場,每場比賽各射擊四次,且用每場擊中環數之和作為該場比賽的成績.數學老師將甲、乙兩名同學的10場比賽成績繪成如圖所示的莖葉圖,并給出下列4個結論:(1)甲的平均成績比乙的平均成績高;(2)甲的成績的極差是29;(3)乙的成績的眾數是21;(4)乙的成績的中位數是18.則這4個結論中,正確結論的個數為( )
A. 1B. 2C. 3D. 4
科目:高中數學 來源: 題型:
【題目】已知拋物線E:,圓C:
.
若過拋物線E的焦點F的直線l與圓C相切,求直線l方程;
在
的條件下,若直線l交拋物線E于A,B兩點,x軸上是否存在點
使
為坐標原點
?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將正分割
成個全等的小正三角形(圖1,圖2分別給出了
的情形),在每個三角形的頂點各放置一個數,使位于
的三邊及平行于某邊的任一直線上的數(當數的個數不少于3時)都分別依次成等差數列,若頂點
處的三個數互不相同且和為1,記所有頂點上的數的和為
,已知
,則
(用含
的式子表達)__________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)求的單調區間;
(Ⅱ)求在區間
上的最小值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】(Ⅰ).
令,得
.
與
的情況如上:
所以,的單調遞減區間是
,單調遞增區間是
.
(Ⅱ)當,即
時,函數
在
上單調遞增,
所以在區間
上的最小值為
.
當,即
時,
由(Ⅰ)知在
上單調遞減,在
上單調遞增,
所以在區間
上的最小值為
.
當,即
時,函數
在
上單調遞減,
所以在區間
上的最小值為
.
綜上,當時,
的最小值為
;
當時,
的最小值為
;
當時,
的最小值為
.
【題型】解答題
【結束】
19
【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點
為拋物線
上一點.
(1)求的方程;
(2)若點在
上,過
作
的兩弦
與
,若
,求證: 直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左、右焦點分別為
,
,下頂點為
,
為坐標原點,點
到直線
的距離為
,
為等腰直角三角形.
(1)求橢圓的標準方程;
(2)直線與橢圓
交于
,
兩點,若直線
與直線
的斜率之和為
,證明:直線
恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】世界衛生組織的最新研究報告顯示,目前中國近視患者人數多達6億,高中生和大學生的近視率均已超過七成,為了研究每周累計戶外暴露時間(單位:小時)與近視發病率的關系,對某中學一年級200名學生進行不記名問卷調查,得到如下數據:
每周累積戶外暴露時間(單位:小時) | 不少于28小時 | ||||
近視人數 | 21 | 39 | 37 | 2 | 1 |
不近視人數 | 3 | 37 | 52 | 5 | 3 |
(1)在每周累計戶外暴露時間不少于28小時的4名學生中,隨機抽取2名,求其中恰有一名學生不近視的概率;
(2)若每周累計戶外暴露時間少于14個小時被認證為“不足夠的戶外暴露時間”,根據以上數據完成如下列聯表,并根據(2)中的列聯表判斷能否在犯錯誤的概率不超過0.01的前提下認為不足夠的戶外暴露時間與近視有關系?
近視 | 不近視 | |
足夠的戶外暴露時間 | ||
不足夠的戶外暴露時間 |
附:
P | 0.050 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點到定點
的距離比它到
軸的距離大
.
(1)求動點的軌跡
的方程;
(2)設點(
為常數),過點
作斜率分別為
的兩條直線
與
,
交曲線
于
兩點,
交曲線
于
兩點,點
分別是線段
的中點,若
,求證:直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據下列條件分別求出直線l的方程.
(1)直線l經過A(4,1),且橫、縱截距相等;
(2)直線l平行于直線3x+4y+17=0,并且與兩坐標軸圍成的三角形的面積為24.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com