日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,在棱錐P-ABCD中,側面PDC是邊長為2的正三角形,且與底面垂直,底面ABCD是菱形,且∠ADC=60°,M為PB的中點,
(1)求證:PA⊥CD;
(2)求二面角P-AB-D的大小;
(3)求證:平面CDM⊥平面PAB.

【答案】分析:(1)取CD中點O,連OA、OP,根據面PCD⊥面ABCD,PO⊥CD,得PO⊥面ABCD,即AO為PA在面ABCD上的射影,利用AO⊥CD,證明PA⊥CD.
(2)先求二面角P-AB-D的平面角,由(1)可證明AB⊥平面PAO,從而可知∠PAO是二面角P-AB-D的平面角,在Rt△PAO中可求∠PAO;
(3)取PA中點N,連接MN,要證明平面CDM⊥平面PAB,只需證明PA⊥平面CDM,從而可轉化為證明PA⊥DN,PA⊥CD.
解答:(1)證明,取CD中點O,連OA、OP,
∵面PCD⊥面ABCD,PO⊥CD,
∴PO⊥面ABCD,即AO為PA在面ABCD上的射影,
又在菱形ABCD中,∠ADC=60°,O為CD中點,DO=DA,
∴AO⊥CD,由三垂線定理得,PA⊥CD.
(2)∵PA⊥CD,OA⊥CD,PA∩0A=A,∴CD⊥平面PAO,
∵AB∥CD,∴AB⊥平面PAO,∴∠PAO是二面角P-AB-D的平面角.
∵PD=AD,∴Rt△POD≌Rt△AOD,∴PO=AO,∠AOP=45°,
所以二面角P-AB-D為45°.
(3)取PA中點N,連接MN,則MN∥AB,
又AB∥CD,∴MN∥CD,
又∵N∈平面CDM,DN?平面CDM,PD=AD,∴PA⊥DN,
又∵PA⊥CD,CD∩DN=D,∴PA⊥平面CDM,
又PA?平面PAB,∴平面CDM⊥平面PAB.
點評:本題考查異面垂直、面面垂直的判定及二面角的求解,考查學生推理論證能力,考查轉化思想的運用,二面角的求解一般轉化為求其平面角,或用空間向量求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在棱錐P-ABCD中,側面PDC是邊長為2的正三角形,底面ABCD是菱形,且∠ADC=60°,E為PA的中點,二面角P-CD-A為120°.
(1)求證:PA⊥平面CDE;
(2)求二面角P-AB-D的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在棱錐P-ABCD中,側面PDC是邊長為2的正三角形,且與底面垂直,底面ABCD是菱形,且∠ADC=60°,M為PB的中點,
(1)求證:PA⊥CD;
(2)求二面角P-AB-D的大小;
(3)求證:平面CDM⊥平面PAB.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在棱錐P-ABCD中,側面PDC是邊長為2的正三角形,且與底面垂直,底面ABCD是菱形,且∠ADC=60°,M為PB的中點,
(1)求證:PA⊥CD;
(2)求二面角P-AB-D的大小;
(3)求證:平面CDM⊥平面PAB.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年安徽省池州一中高二(上)期中數學試卷(理科)(解析版) 題型:解答題

如圖,在棱錐P-ABCD中,側面PDC是邊長為2的正三角形,且與底面垂直,底面ABCD是菱形,且∠ADC=60°,M為PB的中點,
(1)求證:PA⊥CD;
(2)求二面角P-AB-D的大小;
(3)求證:平面CDM⊥平面PAB.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲免费网站 | 亚洲人免费视频 | 国产一区二区久久久 | 一区二区三区中文字幕 | 欧美日韩国产精品久久久久 | 国产一区二区在线播放 | 久久精选视频 | 精品亚洲一区二区三区在线观看 | 欧美一区2区三区4区公司二百 | www.伊人.com | 国产成人精品午夜在线播放 | 日韩精品在线观看一区二区 | 久久综合狠狠综合久久综合88 | 日韩电影免费在线观看中文字幕 | www成人精品 | 精品国产麻豆 | 少妇被粗大的猛烈进大胸视频 | 一区二区三区高清不卡 | 亚洲毛片 | 国产精品久久毛片 | 国产精品久久久一区二区 | 久久久久一区二区三区 | 国内久久 | 国产自在现线2019 | 国产另类一区 | 九色在线视频 | 免费超碰 | 日韩在线一区二区 | 欧洲免费av | av网址在线播放 | 91精品蜜臀一区二区三区在线 | 亚洲一级片 | 亚洲视频一区 | 国产精品婷婷午夜在线观看 | 精品久久久精品 | 日本a v在线播放 | 超碰在 | 狠狠做深爱婷婷综合一区 | 成人av播放 | 国产精品九九九 | 一区二区三区四区 |