【題目】在平面直角坐標系中,O為坐標原點,A(1,1),B(2,0),| |=1.
(1)求 與
夾角;
(2)若 與
垂直,求點C的坐標;
(3)求| +
+
|的取值范圍.
【答案】
(1)解:因為在平面直角坐標系中,O為坐標原點,A(1,1),B(2,0),所以 ,
與
夾角的余弦值為
,所以夾角為45°
(2)解:因為在平面直角坐標系中,O為坐標原點,A(1,1),B(2,0),所以 ,
設 =(x,y).因為
與
垂直,又|
|=1.
所以 ,解得
,或
,所以C
,或C
.
(3)解:由以上得到 +
+
=(3+x,1+y),|
+
+
|2=(x+3)2+(y+1)2,又x2+y2=1,所以|
+
+
|的最大值為
,最小值為
【解析】(1)由已知,得到 與
的坐標,然后根據數量積求夾角;(2)由
與
垂直,得到數量積為0,得到點C的坐標的方程解之;(3)根據|
|=1,結合|
+
+
|的幾何意義求最值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數)
(1)若對于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(2)在(1)的條件下,若方程f(x)+a+1=0在x∈(0,2]上有且只有一個實根,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合M={(x,y)||x|≤2,|y|≤1},在集合M內隨機取出一個元素(x,y).
(1)求以(x,y)為坐標的點落在圓x2+y2=1內的概率.
(2)若x,y都是整數,求以(x,y)為坐標的點落在圓x2+y2=1內或該圓上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,根據下列條件解三角形,則其中有兩個解的是( )
A.b=10,A=45°,B=60°
B.a=60,c=48,B=120°
C.a=7,b=5,A=75°
D.a=14,b=16,A=45°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓心在y軸上的圓C經過點A(1,2)和點B(0,3).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l在兩坐標軸上的截距相等,且被圓C截得的弦長為 ,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準x(噸),估計x的值,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com