【題目】已知橢圓:
的左、右頂點(diǎn)分別為C、D,且過(guò)點(diǎn)
,P是橢圓上異于C、D的任意一點(diǎn),直線PC,PD的斜率之積為
.
(1)求橢圓的方程;
(2)O為坐標(biāo)原點(diǎn),設(shè)直線CP交定直線x = m于點(diǎn)M,當(dāng)m為何值時(shí),為定值.
【答案】(1)(2)
【解析】
(1)設(shè),根據(jù)題意可求得
,再代
入橢圓方程即可求解.
(2)根據(jù)(1)中的結(jié)論, 設(shè)直線,并聯(lián)立與橢圓的方程,求得
,
,再表達(dá)出
,根據(jù)恒成立問(wèn)題求得系數(shù)的關(guān)系即可.也可直接設(shè)
表達(dá)出
,利用
滿足橢圓的方程進(jìn)行化簡(jiǎn),同理可得m的值.
解:(1)橢圓過(guò)點(diǎn)
,∴
,①
又因?yàn)橹本的斜率之積為
,故
.
又.即
,②
聯(lián)立①②得.
∴所求的橢圓方程為.
(2)方法1:由(1)知,.由題意可設(shè)
,
令x=m,得.又設(shè)
由整理得:
.
∵,∴
,
,
所以,
∴,
要使與k無(wú)關(guān),只需
,此時(shí)
恒等于4.
∴
方法2::設(shè),則
,令x=m,得
,
∴
由有
,
所以,
要使與
無(wú)關(guān),只須
,此時(shí)
.
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)
處的切線方程為
,求
的值;
(2)若的導(dǎo)函數(shù)
存在兩個(gè)不相等的零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)當(dāng)時(shí),是否存在整數(shù)
,使得關(guān)于
的不等式
恒成立?若存在,求出
的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(
)的左、右焦點(diǎn)分別是
,
,點(diǎn)
為
的上頂點(diǎn),點(diǎn)
在
上,
,且
.
(1)求的方程;
(2)已知過(guò)原點(diǎn)的直線與橢圓
交于
,
兩點(diǎn),垂直于
的直線
過(guò)
且與橢圓
交于
,
兩點(diǎn),若
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實(shí)數(shù)a的取值范圍為( )
A. (0,1) B. C.
D. (-∞,-2)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解運(yùn)動(dòng)健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過(guò)四個(gè)月的健身后,他們的體重情況如三維餅圖(2)所示.對(duì)比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是( )
A.他們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)不變
B.他們健身后,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了4人
C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg,100kg)
D.他們健身后,原來(lái)體重在[110kg,120kg]內(nèi)的肥胖者體重都至少減輕了10kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠加工某種零件需要經(jīng)過(guò),
,
三道工序,且每道工序的加工都相互獨(dú)立,三道工序加工合格的概率分別為
,
,
.三道工序都合格的零件為一級(jí)品;恰有兩道工序合格的零件為二級(jí)品;其它均為廢品,且加工一個(gè)零件為二級(jí)品的概率為
.
(1)求;
(2)若該零件的一級(jí)品每個(gè)可獲利200元,二級(jí)品每個(gè)可獲利100元,每個(gè)廢品將使工廠損失50元,設(shè)一個(gè)零件經(jīng)過(guò)三道工序加工后最終獲利為元,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩定點(diǎn),
,點(diǎn)P滿足
.
(1)求點(diǎn)P的軌跡C的方程;
(2)若,直線l與軌跡C交于A,B兩點(diǎn),
,
的斜率之和為2,問(wèn)直線l是否恒過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)拋物線上一點(diǎn)
,作兩條直線分別交拋物線于
,
,當(dāng)
與
的斜率存在且傾斜角互補(bǔ)時(shí):
(Ⅰ)求的值;
(Ⅱ)若直線在
軸上的截距
時(shí),求
面積
的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com