【題目】關于圓周率,數學發展史上出現過多很有創意的求法,如著名的蒲豐試驗,受其啟發,我們也可以通過設計下面的試驗來估計的值,試驗步驟如下:①先請高二年級
名同學每人在小卡片上隨機寫下一個實數對
;②若卡片上的
,
能與
構成銳角三角形,則將此卡片上交;③統計上交的卡片數,記為
;④根據統計數
,
估計
的值.那么可以估計
的值約為( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】對于項數為(
)的有窮正整數數列
,記
(
),即
為
中的最大值,稱數列
為數列
的“創新數列”.比如
的“創新數列”為
.
(1)若數列的“創新數列”
為1,2,3,4,4,寫出所有可能的數列
;
(2)設數列為數列
的“創新數列”,滿足
(
),求證:
(
);
(3)設數列為數列
的“創新數列”,數列
中的項互不相等且所有項的和等于所有項的積,求出所有的數列
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某海面上有、
、
三個小島(面積大小忽略不計),
島在
島的北偏東
方向距
島
千米處,
島在
島的正東方向距
島20千米處.以
為坐標原點,
的正東方向為
軸的正方向,1千米為單位長度,建立平面直角坐標系.圓
經過
、
、
三點.
(1)求圓的方程;
(2)若圓區域內有未知暗礁,現有一船D在
島的南偏西30°方向距
島40千米處,正沿著北偏東
行駛,若不改變方向,試問該船有沒有觸礁的危險?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌服裝店為了慶祝開業兩周年,特舉辦“你敢買,我就送”的回饋活動,規定店慶當日進店購買指定服裝的消費者可參加游戲,贏取獎金,游戲分為以下兩種:
游戲 1:參加該游戲贏取獎金的成功率為,成功后可獲得
元獎金;
游戲 2:參加該游戲贏取獎金的成功率為,成功后可得
元獎金;
無論參與哪種游戲,未成功均沒有收獲,每人有且僅有一次機會,且每次游戲成功與否均互不影響,游戲結束后可到收銀臺領取獎金。
(Ⅰ)已知甲參加游戲 1,乙參加游戲 2,記甲與乙獲得的總獎金為,若
,求
的值;
(Ⅱ)若甲、乙、丙三人都選擇游戲 1或都選擇游戲 2,問:他們選擇何種規則,累計得到獎金的數學期望值最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某調查機構對全國互聯網行業進行調查統計,得到整個互聯網行業從業者年齡分布餅狀圖、90后從事互聯網行業者崗位分布條形圖,則下列結論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A. 互聯網行業從業人員中90后占一半以上
B. 互聯網行業中從事技術崗位的人數超過總人數的20%
C. 互聯網行業中從事運營崗位的人數90后比80前多
D. 互聯網行業中從事技術崗位的人數90后比80后多
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com