日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

數(shù)列{an}各項均為正數(shù),sn為其前n項的和,對于n∈N*,總有an,sn,an2成等差數(shù)列.
(1)數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{
1
an
}的前n項的和為Tn,數(shù)列{Tn}的前n項的和為Rn,求證:當(dāng)n≥2時,Rn-1=n(Tn-1)
(3)設(shè)An為數(shù)列{
2an-1
2an
}的前n項積,是否存在實數(shù)a,使得不等式An
2an+1
<a對一切n∈N+都成立?若存在,求出a的取值范圍,若不存在,請說明理由.
分析:第1問主要利用等差中項得出Sn與an的關(guān)系式,在利用an =
S1            n=1
Sn-Sn-1    n≥2
可求出an.第2問就是要用數(shù)學(xué)歸納法證明,先驗證:n=2時等式成立,再假設(shè) n=k時等式成立,推n=k+1時成立,其中有要利用好假設(shè)條件和Rk=Rk-1+Tk就可證出.第3問寫出An的表達(dá)式后,構(gòu)造g(n)=An
2an+1
這個關(guān)于正整數(shù)n的函數(shù),因為An是一個n項的乘積,所以采用作商的方法判斷出g(n)的單調(diào)性,從而使不等式得到證明.
解答:解:(1)由已知有2Sn=an+an2
當(dāng)n=1時,2a1=a1+a12?a1=1,
當(dāng)n≥2時,2Sn-1=an-1+an-12,∴2Sn=an+an2
兩式相減有:2an=an-an-1+an2-an-12
即an-an-1=1.
所以an=n.
(2)由(1)得Tn=1+
1
2
+
1
3
+
+
1
n
,Rn=T1+T2+T3+…+Tn
當(dāng)n=2時,Rn-1=R1=T1=1,n(T2-1)=1,
故當(dāng)n=2時命題成立.
假設(shè)n=k時成立,即Rk-1=k(Tk-1),則當(dāng)n=k+1時,Rk=Rk-1+Tk=k(Tk-1)+Tk=(k+1)Tk-k=(k+1)(Tk-
k
k+1
)
=(k+1)(Tk+
1
k+1
-1)=(k+1)(Tk+1-1)

說明當(dāng)n=k+1時命題也成立.
(3)據(jù)已知An=(1-
1
2a1
)(1-
1
2a2
)
(1-
1
2an
)
,則:g(n)=An
2n+1
=
2n+1
(1-
1
2a1
)(1-
1
2a2
)
(1-
1
2an
)
g(n+1)
g(n)
=(1-
1
2an+1
)
2n+3
2n+1
=
(2n+1)
2n+3
(2n+2)
2n+1
<1
故g(n)單調(diào)遞減,于是[g(n)]max=g(l)=
3
2

要使不等式An
2an+1
<a
對一切n∈N+都成立只需a>
3
2
即可.
點評:本題的第1問比較簡單,主要考查了an =
S1            n=1
Sn-Sn-1    n≥2
這個知識點.第2問主要考查了數(shù)學(xué)歸納法證明,關(guān)鍵在于 n=k+1時的推導(dǎo)過程要利用好假設(shè)條件和題的條件,運(yùn)算的技巧性較強(qiáng).第3問是本題的難點所在,因為常規(guī)判斷單調(diào)性的方法是作差,作商比較少用,但是由本題的特點所決定,這一點需要一定的思維量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}各項均為正數(shù),其前n項和為Sn,且滿足2anSn-
a
2
n
=1
,.
(Ⅰ)求證數(shù)列{
S
2
n
}
為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
2
4
S
4
n
-1
,求數(shù)列{bn}的前n項和Tn,并求使Tn
1
6
(m2-3m)
對所有的n∈N*都成立的最大正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}各項均為正數(shù),其前n項和為Sn,且滿足2anSn-an2=1.
(Ⅰ)求證:數(shù)列{Sn2}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
2
4
S
4
n
-1
,求數(shù)列{bn}的前n項和Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}各項均為正數(shù),其前n項和為Sn,且滿足2anSn-an2=1
(Ⅰ)求證數(shù)列{
S
2
n
}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
2
4S
4
n
-1
,求數(shù)列{bn}的前n項和Tn,并求使Tn
1
6
(m2-3m) 對所有的n∈N*都成立的最大正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南匯區(qū)二模)數(shù)列{an}各項均為正數(shù),Sn為其前n項的和.對于n∈N*,總有an,Sn,an2成等差數(shù)列.
(1)求數(shù)列{an}的通項an
(2)設(shè)數(shù)列{
1
an
}
的前n項和為Tn,數(shù)列{Tn}的前n項和為Rn,求證:當(dāng)n≥2,n∈N時,Rn-1=n(Tn-1);
(3)若函數(shù)f(x)=
1
(p-1)•3qx+1
的定義域為Rn,并且
lim
n→∞
f(an)=0(n∈N*)
,求證p+q>1.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 午夜小视频在线观看 | 国产h在线 | 国产成人精品一区二区三区视频 | 国产欧美日韩一区二区三区 | 九九热精品视频 | 欧美亚洲一区 | 青草国产 | hdxxxxhd100%| 九一国产精品 | 逼逼操| 欧美三级在线视频 | 午夜精品国产精品大乳美女 | 欧美大片18 | 日本男人的天堂 | 一区二区精品在线 | 中文字幕免费观看视频 | 免费看黄色一级片 | 亚洲精选一区 | 五月婷婷综合网 | 国产精品一区在线 | 免费观看的黄色网址 | 亚洲一区二区三区在线视频 | 午夜视频福利 | 亚洲成人久久久 | 国产在线观看免费 | 日韩午夜在线 | 天天看天天爽 | 久久亚洲免费视频 | 国产靠逼视频 | 日韩精品视频一区二区三区 | 色婷婷视频在线观看 | 免费高清av | 日本精品视频在线 | 精品福利在线观看 | 亚洲精品一区二区三区蜜桃久 | 欧美一区二区在线 | www.youjizz.com日本 | 亚洲免费专区 | 在线观看中文字幕 | 日韩av在线网站 | 日本一本在线 |