【題目】已知橢圓:
的左、右焦點分別為
,
,橢圓
的長軸長與焦距之比為
,過
的直線
與
交于
,
兩點.
(1)當的斜率為
時,求
的面積;
(2)當線段的垂直平分線在
軸上的截距最小時,求直線
的方程.
科目:高中數學 來源: 題型:
【題目】Fibonacci數列又稱黃金分割數列,因為當n趨向于無窮大時,其相鄰兩項中的前項與后項的比值越來越接近黃金分割數.已知Fibonacci數列的遞推關系式為
.
(1)證明:Fibonacci數列中任意相鄰三項不可能成等比數列;
(2)Fibonacci數列{an}的偶數項依次構成一個新數列,記為{bn},證明:{bn+1-H2·bn}為等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,
,橢圓
的長軸長與焦距之比為
,過
且斜率不為
的直線
與
交于
,
兩點.
(1)當的斜率為
時,求
的面積;
(2)若在軸上存在一點
,使
是以
為頂點的等腰三角形,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四色猜想是世界三大數學猜想之一,1976年數學家阿佩爾與哈肯證明,稱為四色定理.其內容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國家涂上不同的顏色.”用數學語言表示為“將平面任意地細分為不相重疊的區域,每一個區域總可以用,
,
,
四個數字之一標記,而不會使相鄰的兩個區域得到相同的數字.”如圖,網格紙上小正方形的邊長為
,粗實線圍城的各區域上分別標有數字
,
,
,
的四色地圖符合四色定理,區域
和區域
標記的數字丟失.若在該四色地圖上隨機取一點,則恰好取在標記為
的區域的概率所有可能值中,最大的是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數的圖象,只需把函數
,
的圖象上所有的點( )
A.向左平移個單位長度,再把所得各點的橫坐標伸長到原來的
倍(縱坐標不變)
B.向右平移個單位長度,再把所得各點的橫坐標縮短到原來的
倍(縱坐標不變)
C.向左平移個單位長度,再把所得各點的橫坐標伸長到原來的
倍(縱坐標不變)
D.向右平移個單位長度,再把所得各點的橫坐標伸長到原來的
倍(縱坐標不變)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌經銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據以上數據,能否有95%的把握認為“微信控”與“性別”有關?
(2)現從調查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數;
(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.
參考公式: ,其中
.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓
的左、右焦點分別為
,
,短軸的兩端點分別為
,
,線段
,
的中點分別為
,
,且四邊形
是面積為8的矩形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過作直線
交橢圓于
,
兩點,若
,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com