【題目】平面直角坐標系中,曲線
的參數方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,直線
的方程為
.
(1)求曲線的極坐標方程;
(2)射線與曲線
、直線
分別交于
、
兩點(
異于極點
),求
的最大值.
科目:高中數學 來源: 題型:
【題目】奇函數f(x)在R上存在導數,當x<0時,
f(x),則使得(x2﹣1)f(x)<0成立的x的取值范圍為( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,
年家庭總收入的各種用途占比統計如圖中的條形圖,已知
年的就醫費用比
年的就醫費用增加了
元,則該人
年的儲畜費用為( )
A.元B.
元C.
元D.
元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,圓臺的軸截面為等腰梯形
,
圓臺
的側面積為
.若點
分別為圓
上的動點,且點
在平面
的同側.
(1)求證:;
(2)若,則當三棱錐
的體積取最大值時,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓Q經過定點,且與定直線
相切(其中a為常數,且
).記動圓圓心Q的軌跡為曲線C.
(1)求C的方程,并說明C是什么曲線?
(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得
?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩同學在復習數列時發現原來曾經做過的一道數列問題因紙張被破壞,導致一個條件看不清,具體如下:等比數列的前n項和為
,已知_____,
(1)判斷,
,
的關系;
(2)若,設
,記
的前n項和為
,證明:
.
甲同學記得缺少的條件是首項a1的值,乙同學記得缺少的條件是公比q的值,并且他倆都記得第(1)問的答案是,
,
成等差數列.如果甲、乙兩同學記得的答案是正確的,請你通過推理把條件補充完整并解答此題.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系.xOy中,曲線C1的參數方程為(
為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標方程;
(2)已知曲線C2的極坐標方程為,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4
,求α的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com