日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】已知函數(shù)f(x)=x2axbg(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
(1)求abcd的值;
(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.

【答案】
(1)解:根據(jù)題意 ,因為f(x)=2x+a,g(x)=ex(cx+2)+cex,則由導(dǎo)數(shù)的幾何意義可知 ,所以 =2.

(2)解:由(1)知,

設(shè)函數(shù)

由題設(shè)可得 ,即

①若 ,則 ,∴當 時,

,當 時, ,即F(x)在 單調(diào)遞減,在 單調(diào)遞增,故 取最小值

∴當 時, ,即 恒成立.

②若 ,則

∴當 時, ,∴ 單調(diào)遞增,

,∴當 時, ,即 恒成立,

③若 ,則

∴當 時, 不可能恒成立.

綜上所述, 的取值范圍為


【解析】(1)根據(jù)題意f(0)=2,g(0)=2,根據(jù)導(dǎo)數(shù)的幾何意義可知f(0)=4,g(0)=4,從而可求得a,b,c,d的值;(2)構(gòu)造函數(shù) F(x)=kg(x)-f(x) ,若x≥-2時,恒有f(x)≤kg(x),即證 x ≥ 2 時恒有 F ( x ) ≥ 0 .先將函數(shù) F(x)=kg(x)-f(x)求導(dǎo),討論導(dǎo)數(shù)的正負得函數(shù)的增減區(qū)間,根據(jù)函數(shù)的單調(diào)性求其最值.使其最小值大于等于0即可.
【考點精析】利用導(dǎo)數(shù)的幾何意義和函數(shù)的最大(小)值與導(dǎo)數(shù)對題目進行判斷即可得到答案,需要熟知通過圖像,我們可以看出當點趨近于時,直線與曲線相切.容易知道,割線的斜率是,當點趨近于時,函數(shù)處的導(dǎo)數(shù)就是切線PT的斜率k,即;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:四棱錐P﹣ABCD中,PD=PC,底面ABCD是直角梯形AB⊥BC,AB∥CD,CD=2AB,點M是CD的中點.

(1)求證:AM∥平面PBC;
(2)求證:CD⊥PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知點

)若 是正方形一條邊上的兩個頂點,求這個正方形過頂點的兩條邊所在直線的方程

)若 是正方形一條對角線上的兩個頂點,求這個正方形另外一條對角線所在直線的方程及其端點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無窮數(shù)列中, ,對于任意,都有 ,設(shè),記使得成立的的最大值為

)設(shè)數(shù)列 ,寫出 的值.

)若為等比例數(shù)列,且,求的值.

)若為等差數(shù)列,求出所有可能的數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為x,求x的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x-3)2+(y-4)2=1,設(shè)點P是圓C上的動點.記d=|PB|2+|PA|2,其中A(0,1),B(0,-1),則d的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銳角三角形中, ,則面積的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|-|x-1|.
(Ⅰ)當a=-2時,求不等式 的解集;
(Ⅱ)若f(x)≥2有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,

(1)證明:PA∥平面EDB

(2)證明:平面BDE平面PCB

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 粉色午夜视频 | 超碰一区| 韩日一区 | 成人欧美一区二区三区黑人孕妇 | 日韩福利视频 | 999国产在线 | 欧美成视频 | 免费视频一区 | 一级毛片免费不卡 | 日韩成人一级片 | 亚洲一区丝袜 | 天天综合久久 | 欧美一级日韩片 | 国产成人精品亚洲男人的天堂 | 精品综合久久久 | 久久精品91 | 日韩精品第一页 | 在线日韩欧美 | www.av视频| 人人骚| 91丁香| www.日韩大片| 啊v视频| 精品国产一区二区三区久久久 | 午夜一级毛片 | 国产精品久久久久久亚洲调教 | avmans最新导航地址 | 一二三区精品 | 国产激情在线观看视频 | 亚洲永久 | 亚洲精品电影 | 国产精品二区三区 | 免费在线成人av | 午夜精品久久久久久久久久久久 | 福利一区二区 | av下一页 | 欧洲一区二区视频 | 99av| 在线观看www| 欧美a∨一区二区三区久久黄 | 国产一区二区免费电影 |