【題目】
有一個側面是正三角形的四棱錐如圖(1),它的三視圖如圖(2).
(Ⅰ)證明: 平面
;
(Ⅱ)求平面與正三角形側面所成二面角的余弦值.
【答案】(Ⅰ)見解析(Ⅱ)
【解析】試題分析:(Ⅰ)由三視圖可知,四棱錐中
平面
,四邊形
為直角梯形,在底面證出
,又
即得證.
(Ⅱ)由三視圖可知,四棱錐的正三角形側面為面
建立空間直角坐標系,找出兩個面的法向量,找向量的夾角的余弦值即得解
試題解析:
(Ⅰ)由三視圖可知,四棱錐中
平面
,
同時, ,四邊形
為直角梯形.
過點作
于
,則
,
.
∴,
,
∴,故
.
∵平面
,
平面
,∴
∵,∴
平面
.
(Ⅱ)由三視圖可知,四棱錐的正三角形側面為面
.
為正三角形,∴
.在
中,
.
以為原點,
分別為
軸建立空間直角坐標系,
有.
由(Ⅰ)知是平面
的一條法向量.
向量,
設平面的法向量為
,由
,得
的一組解
.
設平面與正三角形側面
所成二面角為
,則
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,曲線C的極坐標方程是ρ=
.
(1)寫出直線l的極坐標方程與曲線C的普通方程;
(2)若點 P是曲線C上的動點,求 P到直線l的距離的最小值,并求出 P點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:
①定義在R上的函數f(x)滿足f(﹣2)=f(2),則f(x)不是奇函數
②定義在R上的函數f(x)恒滿足f(﹣x)=|f(x)|,則f(x)一定是偶函數
③一個函數的解析式為y=x2 , 它的值域為{0,1,4},這樣的不同函數共有9個
④設函數f(x)=lnx,則對于定義域中的任意x1 , x2(x1≠x2),恒有 ,
其中為真命題的序號有(填上所有真命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國家規定個人稿費納稅辦法是:不超過800元的不納稅;超過800元而不超過4 000元的按超過800元部分的14%納稅;超過4 000元的按全部稿酬的11%納稅.已知某人出版一本書,共納稅420元,這個人應得稿費(扣稅前)為( )
A.2800元
B.3000元
C.3800元
D.3818元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數y=2sin(2x+ )的圖象向右平移
個周期后,所得圖象對應的函數為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin(2x﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f′(x)是奇函數f(x)(x∈R)的導函數,f(﹣2)=0,當x>0時,xf′(x)﹣f(x)>0,則使得f(x)>0成立的x的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小區停車場的收費標準為:每車每次停車時間不超過2小時免費,超過2小時的部分每小時收費1元(不足1小時的部分按1小時計算).現有甲乙兩人相互獨立到停車場停車(各停車一次),且兩人停車的時間均不超過5小時,設甲、乙兩人停車時間(小時)與取車概率如下表所示:
(1)求甲、乙兩人所付車費相同的概率;
(2)設甲、乙兩人所付停車費之和為隨機變量,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知冪函數 (m∈Z)的圖象關于y軸對稱,且在區間(0,+∞)為減函數
(1)求m的值和函數f(x)的解析式
(2)解關于x的不等式f(x+2)<f(1﹣2x).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】⊙O1和⊙O2的極坐標方程分別為ρ=4cosθ,ρ=﹣4sinθ.
(1)⊙O1和⊙O2的極坐標方程化為直角坐標方程;
(2)求經過⊙O1和⊙O2交點的直線的直角坐標方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com