【題目】已知橢圓的左、右焦點分別為
,長軸長為4,且過點
.
(1)求橢圓C的方程;
(2)過的直線l交橢圓C于
兩點,過A作x軸的垂線交橢圓C與另一點Q(Q不與
重合).設
的外心為G,求證
為定值.
科目:高中數學 來源: 題型:
【題目】在單位圓O:x2+y2=1上任取一點P(x,y),圓O與x軸正向的交點是A,設將OA繞原點O旋轉到OP所成的角為θ,記x,y關于θ的表達式分別為x=f(θ),y=g(θ),則下列說法正確的是( )
A.x=f(θ)是偶函數,y=g(θ)是奇函數
B.x=f(θ)在為增函數,y=g(θ)在
為減函數
C.f(θ)+g(θ)≥1對于恒成立
D.函數t=2f(θ)+g(2θ)的最大值為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點,直線
,過動點
作
于點
,
的平分線交
軸于點
,且
,記動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)過點作兩條直線,分別交曲線
于
兩點(異于
點).當直線
的斜率之和為2時,直線
是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(
)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(1)求橢圓C的標準方程;
(2)設F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當最小時,求點T的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校開展學生社會法治服務項目,共設置了文明交通,社區服務,環保宣傳和中國傳統文化宣講四個項目,現有該校的甲、乙、丙、丁4名學生,每名學生必須且只能選擇1項.
(1)求恰有2個項目沒有被這4名學生選擇的概率;
(2)求“環保宣傳”被這4名學生選擇的人數的分布列及其數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數有兩個不同的極值點
.
(1)求的取值范圍.
(2)求的極大值與極小值之和的取值范圍.
(3)若,則
是否有最小值?若有,求出最小值;若沒有,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為拋物線
上的一點,
,
為拋物線上異于點
的兩點,且直線
的斜率與直線
的斜率互為相反數.
(1)求直線的斜率;
(2)設直線過點
并交拋物線于
,
兩點,且
,直線
與
軸交于點
,試探究
與
的夾角是否為定值,若是則求出定值,若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A,B的坐標分別是(,0),(
,0),動點M(x,y)滿足直線AM和BM的斜率之積為﹣3,記M的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+m與曲線E相交于P,Q兩點,若曲線E上存在點R,使得四邊形OPRQ為平行四邊形(其中O為坐標原點),求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是以
為直徑的圓上一點,
,等腰梯形
所在的平面垂直于⊙
所在的平面,且
.
(1)求與
所成的角;
(2)若異面直線和
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com