【題目】如圖,在直角梯形中,
,
,
,
,
,點(diǎn)
在
上,且
,將
沿
折起,使得平面
平面
(如圖),
為
中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求四棱錐的體積;
(Ⅲ)在線段上是否存在點(diǎn)
,使得
平面
?若存在,求
的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ)見解析(Ⅱ)(Ⅲ)見解析
【解析】
(I)證明DG⊥AE,再由面面垂直的性質(zhì)可得到證明;(II)分別計(jì)算DG和梯形ABCE的面積,即可得棱錐體積;(III)過(guò)點(diǎn)C作CF∥AE交AB于點(diǎn)F,過(guò)點(diǎn)F作FP∥AD交DB于點(diǎn)P,連接PC,可證平面PCF∥平面ADE,故CP∥平面ADE,根據(jù)PF∥AD計(jì)算的值.
(Ⅰ)證明:因?yàn)?/span>為
中點(diǎn),
,
所以.
因?yàn)槠矫?/span>平面
,
平面平面
,
平面
,
所以平面
.
(Ⅱ)在直角三角形中,易求
,則
.
所以四棱錐的體積為
.
(Ⅲ) 過(guò)點(diǎn)C作交
于點(diǎn)
,則
.
過(guò)點(diǎn)作
交
于點(diǎn)
,連接
,則
.
又因?yàn)?/span>,
平面
平面
,
所以平面
.
同理平面
.
又因?yàn)?/span>,
所以平面平面
.
因?yàn)?/span>平面
,
所以平面
.
所以在上存在點(diǎn)
,使得
平面
,且
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意的,總存在
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某手機(jī)商城2018年華為、蘋果、三星三種品牌的手機(jī)各季度銷量的百分比堆積圖(如:第三季度華為銷量約占,三星銷量約占
,蘋果銷量約占
),根據(jù)該圖,以下結(jié)論中一定正確的是( )
A. 四個(gè)季度中,每季度三星和蘋果總銷量之和均不低于華為的銷量
B. 蘋果第二季度的銷量小于第三季度的銷量
C. 第一季度銷量最大的為三星,銷量最小的為蘋果
D. 華為的全年銷量最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若曲線在點(diǎn)
處的切線與x軸平行,求a的值;
(Ⅱ)若在
處取得極大值,求a的取值范圍;
(Ⅲ)當(dāng)a=2時(shí),若函數(shù)有3個(gè)零點(diǎn),求m的取值范圍.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z滿足|z|,z的實(shí)部大于0,z2的虛部為2.
(1)求復(fù)數(shù)z;
(2)設(shè)復(fù)數(shù)z,z2,z﹣z2之在復(fù)平面上對(duì)應(yīng)的點(diǎn)分別為A,B,C,求()
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)l為曲線C:在點(diǎn)
處的切線.
(1)求l的方程;
(2)證明:除切點(diǎn)之外,曲線C在直線l的下方;
(3)求證:(其中
,
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知(
是虛數(shù)單位)是關(guān)于
的方程
的根,
、
,求
的值;
(2)已知(
是虛數(shù)單位)是關(guān)于
的方程
的一個(gè)根,
、
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為
,
,上頂點(diǎn)為
,過(guò)點(diǎn)
與
垂直的直線交
軸負(fù)半軸于點(diǎn)
,且
.
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)
作斜率為1的直線
與橢圓
交于
兩點(diǎn),試在
軸上求一點(diǎn)
,使得以
,
為鄰邊的平行四邊形是菱形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足
(
為常數(shù),
,
,
),給出下列四個(gè)結(jié)論:①若數(shù)列
是周期數(shù)列,則周期必為2:②若
,則數(shù)列
必是常數(shù)列:③若
,則數(shù)列
是遞增數(shù)列:④若
,則數(shù)列
是有窮數(shù)列,其中,所有錯(cuò)誤結(jié)論的序號(hào)是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com