【題目】如圖,在三棱臺(tái)ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
【答案】(1)見(jiàn)解析;(2)
【解析】試題分析:(1)由面面垂直性質(zhì)定理得AC⊥平面BCFE,因此BF⊥AC.再根據(jù)平幾知識(shí)得BF⊥FC.最后根據(jù)線(xiàn)面垂直判定定理得結(jié)論(2)過(guò)點(diǎn)F作FQ⊥AK于Q,由三垂線(xiàn)定理得BQ⊥AK.即∠BQF是二面角B-AD-F的平面角.再根據(jù)解三角形得二面角B-AD-F的平面角的余弦值
試題解析:(1)證明 延長(zhǎng)AD,BE,CF相交于一點(diǎn)K,如圖所示.
因?yàn)槠矫?/span>BCFE⊥平面ABC,平面BCFE∩平面ABC=BC,且AC⊥BC,
所以AC⊥平面BCFE,因此BF⊥AC.
又因?yàn)?/span>EF∥BC,BE=EF=FC=1,BC=2,所以△BCK為等邊三角形,且F為CK的中點(diǎn),則BF⊥CK,且CK∩AC=C,CK,AC都在平面ACFD內(nèi),
所以BF⊥平面ACFD.
(2)過(guò)點(diǎn)F作FQ⊥AK于Q,連接BQ.
因?yàn)?/span>BF⊥平面ACFD,AK在平面ACFD內(nèi),所以BF⊥AK,
則AK⊥平面BQF,BQ在平面BQF內(nèi),所以BQ⊥AK.
所以∠BQF是二面角B-AD-F的平面角.
在Rt△ACK中,AC=3,CK=2,得FQ=.
在Rt△BQF中,FQ=,BF=
,得cos∠BQF=
.
所以,二面角B-AD-F的平面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】樹(shù)立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問(wèn)題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問(wèn)題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出
人,并將這
人按年齡分組:第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示.
(Ⅰ)求出的值;
(Ⅱ)求出這人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位);
(Ⅲ)現(xiàn)在要從年齡較小的第、
組中用分層抽樣的方法抽取
人,則第
、
組分別抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)雙曲線(xiàn)C的焦點(diǎn)在軸上,離心率為
,其一個(gè)頂點(diǎn)的坐標(biāo)是(0,1).
(Ⅰ)求雙曲線(xiàn)C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線(xiàn)與該雙曲線(xiàn)交于A、B兩點(diǎn),且A、B的中點(diǎn)為(2,3),求直線(xiàn)
的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的圖像可由
的圖像平移得到,對(duì)于任意的實(shí)數(shù)
,均有
成立,且存在實(shí)數(shù)
,使得
為奇函數(shù).
(Ⅰ)求函數(shù)的解析式.
(Ⅱ)函數(shù)的圖像與直線(xiàn)
有兩個(gè)不同的交點(diǎn)
,
,若
,
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為a,E、F、G、H分別為AB、BC、CD、DA的中點(diǎn).若沿EF、FG、GH、HE將四角折起,試問(wèn)能折成一個(gè)四棱錐嗎?為什么?你從中能得到什么結(jié)論?對(duì)于圓錐有什么類(lèi)似的結(jié)論?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
上頂點(diǎn)為
,右焦點(diǎn)為
,過(guò)右頂點(diǎn)
作直線(xiàn)
,且與
軸交于點(diǎn)
,又在直線(xiàn)
和橢圓
上分別取點(diǎn)
和點(diǎn)
,滿(mǎn)足
(
為坐標(biāo)原點(diǎn)),連接
.
(1)求的值,并證明直線(xiàn)
與圓
相切;
(2)判斷直線(xiàn)與圓
是否相切?若相切,請(qǐng)證明;若不相切,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線(xiàn)段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=,則下列結(jié)論中錯(cuò)誤的是
A.AC⊥BE B.EF∥平面ABCD
C.三棱錐A-BEF的體積為定值 D.異面直線(xiàn)AE,BF所成的角為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中,已知
⊥平面
,
,
,
為
的中點(diǎn).
(1)求證: ;
(2)若為
的中點(diǎn),點(diǎn)
在直線(xiàn)
上,且
,
求證:直線(xiàn)//平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:(1)異面直線(xiàn)是指空間兩條既不平行也不相交的直線(xiàn);(2)若直線(xiàn)上有兩點(diǎn)到平面
的距離相等,則
;(3)若直線(xiàn)
與平面
內(nèi)無(wú)窮多條直線(xiàn)都垂直,則
;(4)兩條異面直線(xiàn)中的一條垂直于平面
,則另一條必定不垂直于平面
.其中正確命題的個(gè)數(shù)是 ( )
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com