【題目】已知橢圓的左、右頂點分別為A,B,直線l斜率大于0,且l經過橢圓的右焦點F,與橢圓交于兩點P,Q,若△AFP,△BFQ的面積分別為S1,S2,若
,則直線l的斜率為_____.
科目:高中數學 來源: 題型:
【題目】橢圓: (a>b>0),左右焦點分別是F1 , F2 , 焦距為2c,若直線
與橢圓交于M點,滿足∠MF1F2=2∠MF2F1 , 則離心率是( )
A.
B. -1
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為R.a,b∈R,若此函數同時滿足:
①當a+b=0時,有f(a)+f(b)=0;
②當a+b>0時,有f(a)+f(b)>0,
則稱函數f(x)為Ω函數.
在下列函數中:
①y=x+sinx;
②y=3x﹣( )x;
③y=
是Ω函數的為 . (填出所有符合要求的函數序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分數在[120,130)內的頻率,并補全這個頻
率分布直方圖;
統計方法中,同一組數據常用該組區間的中點
值作為代表,據此估計本次考試的平均分;
(3)用分層抽樣的方法在分數段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數段[120,130)內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M的方程為x2+(y﹣2)2=1,直線l的方程為x﹣2y=0,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
(1)若點P的橫坐標為1,求切線PA,PB的方程;
(2)若點P的縱坐標為a,且在圓M上存在點Q到點P的距離為1,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣x,若對任意x1 , x2∈[2,+∞),且x1≠x2 , 不等式 >0恒成立,則實數a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是雙曲線E:
的左、右焦點,P是雙曲線上一點,
到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當
時,
的面積為
,求此雙曲線的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校在高二年級實行選課走班教學,學校為學生提供了多種課程,其中數學科提供5種不同層次的課程,分別稱為數學1、數學2、數學3、數學4、數學5,每個學生只能從這5種數學課程中選擇一種學習,該校高二年級1800名學生的數學選課人數統計如表:
課程 | 數學1 | 數學2 | 數學3 | 數學4 | 數學5 | 合計 |
選課人數 | 180 | 540 | 540 | 360 | 180 | 1800 |
為了了解數學成績與學生選課情況之間的關系,用分層抽樣的方法從這1800名學生中抽取了10人進行分析.
(1)從選出的10名學生中隨機抽取3人,求這3人中至少有2人選擇數學2的概率;
(2)從選出的10名學生中隨機抽取3人,記這3人中選擇數學2的人數為X,選擇數學1的人數為Y,設隨機變量ξ=X﹣Y,求隨機變量ξ的分布列和數學期望E(ξ).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com