【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線
的普通方程為
,曲線
參數(shù)方程為
(
為參數(shù));以坐標(biāo)原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,
.
(1)求的參數(shù)方程和
的直角坐標(biāo)方程;
(2)已知是
上參數(shù)
對應(yīng)的點,
為
上的點,求
中點
到直線
的距離取得最小值時,點
的直角坐標(biāo).
【答案】(1)的參數(shù)方程為
(
為參數(shù));
的直角坐標(biāo)方程為
;(2)
.
【解析】
(1)先將化為標(biāo)準(zhǔn)方程,然后利用圓的參數(shù)方程的知識,寫出
的參數(shù)方程.利用傾斜角和斜率的對應(yīng)關(guān)系,求得
的直角坐標(biāo)方程.(2)先求得
點的坐標(biāo),利用參數(shù)表示出
出點的坐標(biāo),由中點坐標(biāo)公式求得
點坐標(biāo),利用點到直線距離公式求得距離
的表達(dá)式,并利用三角函數(shù)的知識求得最小值,并求出
點的坐標(biāo).
解:
(1)化為
,所以
的參數(shù)方程為
(
為參數(shù));
的直角坐標(biāo)方程為
.
(2)由題設(shè),由(1)可設(shè)
,于是
.
到直線
距離
,當(dāng)
時,
取最小值
,此時點
的直角坐標(biāo)為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,
點的極坐標(biāo)為
,斜率為
的直線
經(jīng)過點
.
(I)求曲線的普通方程和直線
的參數(shù)方程;
(II)設(shè)直線與曲線
相交于
,
兩點,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),等腰梯形,
,
,
,
,
分別是
的兩個三等分點,若把等腰梯形沿虛線
、
折起,使得點
和點
重合,記為點
, 如圖(2).
(1)求證:平面平面
;
(2)求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形
為正方形,
,
,
.
(1)證明:平面平面
.
(2)若平面
,二面角
為
,三棱錐
的外接球的球心為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市交通部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評分值為
的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 (2017·黃岡質(zhì)檢)如圖,在棱長均為2的正四棱錐P-ABCD中,點E為PC的中點,則下列命題正確的是( )
A.BE∥平面PAD,且BE到平面PAD的距離為
B.BE∥平面PAD,且BE到平面PAD的距離為
C.BE與平面PAD不平行,且BE與平面PAD所成的角大于30°
D.BE與平面PAD不平行,且BE與平面PAD所成的角小于30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,
軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求直線的普通方程以及圓
的直角坐標(biāo)方程;
(2)若直線與圓
交于
兩點,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國家涂上不同的顏色.”用數(shù)學(xué)語言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個區(qū)域總可以用,
,
,
四個數(shù)字之一標(biāo)記,而不會使相鄰的兩個區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長為
,粗實線圍城的各區(qū)域上分別標(biāo)有數(shù)字
,
,
,
的四色地圖符合四色定理,區(qū)域
和區(qū)域
標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點,則恰好取在標(biāo)記為
的區(qū)域的概率所有可能值中,最大的是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),
.有下列命題:
①對,恒有
成立.
②,使得
成立.
③“若,則有
且
.”的否命題.
④“若且
,則有
.”的逆否命題.
其中,真命題有_____________.(只需填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com