【題目】在平面直角坐標系中已知橢圓
過點
,其左、右焦點分別為
,離心率為
.
(1)求橢圓E的方程;
(2)若A,B分別為橢圓E的左、右頂點,動點M滿足,且MA交橢圓E于點P.
(i)求證:為定值;
(ii)設PB與以PM為直徑的圓的另一交點為Q,問:直線MQ是否過定點,并說明理由.
【答案】(1) (2) (i)證明見解析,定值為4 (ii)直線
過定點
.
【解析】
(1)由題意得離心率公式和點滿足的方程,結合橢圓的的關系,可得
,進而得到橢圓方程;
(2)(i)設,求得直線MA的方程,代入橢圓方程,解得點P的坐標,再由向量的數量積的坐標表示,計算即可得證;
(ii)直線MQ過定點O(0,0).先求得PB的斜率,再由圓的性質可得MQ⊥PB,求出MQ的斜率,再求直線MQ的方程,即可得到定點.
解:(1)易得且
,
解得
所以橢圓E的方程為
(2)設,
①易得直線的方程為:
,
代入橢圓得,
,
由得,
,從而
,
所以示,
②直線過定點
,理由如下:
依題意,,
由得,
,
則的方程為:
,即
,
所以直線過定點
.
科目:高中數學 來源: 題型:
【題目】已知正項數列的前
項和為
,且
.
(1)求數列的通項公式;
(2)若,數列
的前
項和為
,求
的取值范圍;
(3)若,從數列
中抽出部分項(奇數項與偶數項均不少于兩項),將抽出的項按照某一順序排列后構成等差數列.當等差數列的項數最大時,求所有滿足條件的等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年中秋節到來之際,某超市為了解中秋節期間月餅的銷售量,對其所在銷售范圍內的1000名消費者在中秋節期間的月餅購買量單位:
進行了問卷調查,得到如下頻率分布直方圖:
求頻率分布直方圖中a的值;
以頻率作為概率,試求消費者月餅購買量在
的概率;
已知該超市所在銷售范圍內有20萬人,并且該超市每年的銷售份額約占該市場總量的
,請根據這1000名消費者的人均月餅購買量估計該超市應準備多少噸月餅恰好能滿足市場需求
頻率分布直方圖中同一組的數據用該組區間的中點值作代表
?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知函數y=f(x)在R上單調遞增,函數y=f(x+1)的圖象關于點(﹣1,0)對稱,f(﹣1)=﹣2,則滿足﹣2≤f(lgx﹣1)≤2的x的取值范圍是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4―4:坐標系與參數方程]
在直角坐標系xOy中,曲線C的參數方程為(θ為參數),直線l的參數方程為
.
(1)若a=1,求C與l的交點坐標;
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的右焦點為
,過點
的直線(不與
軸重合)與橢圓
相交于
,
兩點,直線
:
與
軸相交于點
,過點
作
,垂足為D.
(1)求四邊形(
為坐標原點)面積的取值范圍;
(2)證明直線過定點
,并求出點
的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com