日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
各項均為正數的數列{an}的前n項和為Sn
(1)求an;
(2)令,求{cn}的前n項和Tn
(3)令(λ、q為常數,q>0且q≠1),cn=3+n+(b1+b2+…+bn),是否存在實數對(λ、q),使得數列{cn}成等比數列?若存在,求出實數對(λ、q)及數列{cn}的通項公式,若不存在,請說明理由.
【答案】分析:(1)由題意知,(an+an-1)(an-an-1-2)=0,由此可知an=2n(n∈N*).
(2)由題意知c1=b6=b3=a3=6,c2=b8=b4=b2=b1=a1=2,所以,由此可知
(3)由題設條件知得,由此可以推導出存在,
解答:解:(1),
∵a1>0,∴a1=2;
當n≥2時,,
,即(an+an-1)(an-an-1-2)=0
∵an>0,∴an-an-1=2,∴{an}為等差數列,(2分)
∴an=2n(n∈N*);(4分)
(2)c1=b6=b3=a3=6,c2=b8=b4=b2=b1=a1=2,(6分)
n≥3時,,(8分)
此時,Tn=8+(22+2)+(23+2)+(2n-1+2)=2n+2n;
;(10分)
(3),
,(14分)
∴存在,.(16分)
點評:本題考查數列性質的綜合應用,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設單調遞增函數f(x)的定義域為(0,+∞),且對任意的正實數x,y有f(xy)=f(x)+f(y),且f(
1
2
)=-1

(1)一個各項均為正數的數列{an}滿足:f(sn)=f(an)+f(an+1)-1其中Sn為數列{an}的前n項和,求數列{an}的通項公式;
(2)在(1)的條件下,是否存在正數M使下列不等式:2n•a1a2…an≥M
2n+1
(2a1-1)(2a2-1)…(2an-1)
對一切n∈N*成立?若存在,求出M的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

各項均為正數的數列{an}中,a1=1,Sn是數列{an}的前n項和,對任意n∈N,有2Sn=2p
a
2
n
+pan-p(p∈R).
(1)求常數p的值;
(2)求數列{an}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知各項均為正數的數列{an}的前n項和為Sn,且Sn,an
1
2
成等差數列,
(1)求a1,a2的值;
(2)求數列{an}的通項公式;
(3)若bn=4-2n(n∈N*),設cn=
bn
an
,求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

各項均為正數的數列{an}的前n項和為Sn,且點(an,Sn)在函數y=
1
2
x2+
1
2
x-3
的圖象上,
(1)求數列{an}的通項公式;
(2)記bn=nan(n∈N*),求證:
1
b1
+
1
b2
+…+
1
bn
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•長寧區二模)已知各項均為正數的數列{an}的前n項和sn滿足s1>1,且6sn=(an+1)(an+2)(n為正整數).
(1)求{an}的通項公式;
(2)設數列{bn}滿足bn=
an,n為偶數
2an,n為奇數
,求Tn=b1+b2+…+bn;
(3)設Cn=
bn+1
bn
,(n為正整數)
,問是否存在正整數N,使得n>N時恒有Cn>2008成立?若存在,請求出所有N的范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 在线日本中文字幕 | 国产日韩精品视频 | 国产美女在线播放 | 亚洲精品国产setv | 日韩资源在线 | 欧美一区二区三区在线观看视频 | 黄色精品网站 | 91精品国产九九九久久久亚洲 | 国产日韩欧美一区二区 | segui88久久综合9999 | 蜜臀av国产精品久久久久 | 久久久久久久久久久久国产精品 | 手机看片日韩 | 欧美一区二区三区免费电影 | 九九热这里| 麻豆一区一区三区四区 | 国产亚洲精品久 | 伊人春色在线播放 | 国产91导航 | 视频精品一区二区三区 | 日韩一区二区三区在线观看 | 欧美一级免费观看 | 久久无码精品一区二区三区 | 精品一区二区三区在线视频 | 伊人网站| 久久国产精品久久久久久 | 97av| 中文字幕在线看片 | 国产精品成人一区二区三区夜夜夜 | 亚洲精品视频一区二区三区 | 伊人无码高清 | 亚洲日本中文 | 国产精彩视频 | 黄色国产精品 | 国产在线高清 | 夜夜天天操 | 日韩精品123| 日本a在线 | 欧美精品久久久久久久监狱 | 国产亚洲aaa | 久久精美视频 |