(本小題滿分14分)
設函數,
(1)求證:不論為何實數
在定義域上總為增函數;
(2)確定的值,使
為奇函數;
(3)當為奇函數時,求
的值域.
(1) 見解析; (2)
(3)為奇函數時,其值域為
【解析】(1)先設x1<x2,欲證明不論a為何實數f(x)總是為增函數,只須證明:f(x1)-f(x2)<0,即可;
(2)根據f(x)為奇函數,利用定義得出f(-x)=-f(x)恒成立,從而求得a值即可.
(3)由(2)知,利用指數函數y=2x的性質結合不等式的性質即可求得f(x)的值域.
(1) 的定義域為R, 設
,且
,
則=
,
,
,
即,所以不論
為何實數
總為增函數.……………………5分
(2) 為奇函數,
,即
,
整理得 ,
則 ,解得:
……………………10分
(4)由(2)知,
,
,
故當為奇函數時,其值域為
……………………14分
另解:由(2)知.
由,得
,
當時,得
,矛盾,所以
;
故有.
當時,
,所以
,解得
.
故當為奇函數時,其值域為
………………14分
科目:高中數學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列}是等比數列;
(2)設,求
及數列{
}的通項公式;
(3)記,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com