已知橢圓C1:(a>b>0)的離心率為
,x軸被拋物線C2:y=x2-b截得的線段長等于C1的長半軸長.
(1)求C1,C2的方程;
(2)設C2與y軸的交點為M,過坐標原點O的直線l:y=kx與C2相交于A,B兩點,直線MA,MB分別與C1相交于D,E.
①證明:·
為定值;
②記△MDE的面積為S,試把S表示成k的函數,并求S的最大值.
科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練24練習卷(解析版) 題型:解答題
已知橢圓C1:+
=1(a>b>0)的右頂點為A(1,0),過C1的焦點且垂直長軸的弦長為1.
(1)求橢圓C1的方程;
(2)設點P在拋物線C2:y=x2+h(h∈R)上,C2在點P處的切線與C1交于點M,N.當線段AP的中點與MN的中點的橫坐標相等時,求h的最小值.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練24練習卷(解析版) 題型:解答題
在平面直角坐標系xOy中,已知橢圓C1:+
=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練24練習卷(解析版) 題型:選擇題
已知橢圓C1:+
=1(a>b>0)與雙曲線C2:x2-
=1有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點.若C1恰好將線段AB三等分,則( )
(A)a2= (B)a2=13
(C)b2= (D)b2=2
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)求橢圓C1的離心率;
(2)若·
的最大值為49,求橢圓C1的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)
已知橢圓C1: (a>b>0)的離心率為
,直線
:
+2=0與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切。
(1)求橢圓C1的方程;
(2)設橢圓C1的左焦點為F 1,右焦點F2,直線過點F1且垂直于橢圓的長軸,動直線
垂直直線
于點P,線段PF2的垂直平分線交
于點M,求點M的軌跡C2的方程;
(3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的點,且AB⊥ BC,求Yo的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com