日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
探究函數f(x)=x+
4
x
,x∈(0,+∞)取最小值時x的值,列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
請觀察表中y值隨x值變化的特點,完成以下的問題:
(1)函數(x)=x+
4
x
(x>0)在區間(0,2)上遞減;函數f(x)在區間
[2,+∞)
[2,+∞)
上遞增.當x=
2
2
 時,ymin=
4
4

(2)證明:函數f(x)=x+
4
x
(x>0)在區間(0,2)上遞減.
分析:(1)直接通過觀察圖表得到結論;
(2)利用函數單調性的定義,在(0,2)內任取兩個不同的值,規定大小后,對相應的函數值作差判符號.
解答:解:①由表格可知,函數f(x)在[2,+∞)上遞增,當x=2時函數取得最小值4.
故答案為[2,+∞);2;4.
②證明:設x1,x2∈(0,2),且x1<x2,則
f(x1)-f(x2)=(x1+
4
x1
)-(x2+
4
x2
)

=(x1-x2)+(
4
x1
-
4
x2
)=
(x1-x2)(x1x2-4)
x1x2

∵x1,x2∈(0,2),x1<x2,∴x1-x2<0,x1x2∈(0,4)
∴f(x1)-f(x2)>0,即f(x1)>f(x2
f(x)=x+
4
x
在區間(0,2)上遞減.
點評:本題考查了函數單調性的判斷與證明,解答的關鍵是對函數值差的符號的判斷,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

探究函數f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數f(x)=x+
4
x
(x>0)
在區間(0,2)上遞減,函數f(x)=x+
4
x
(x>0)
在區間
 
上遞增;
(2)函數f(x)=x+
4
x
(x>0)
,當x=
 
時,y最小=
 

(3)函數f(x)=x+
4
x
(x<0)
時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結果,不需證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

探究函數f(x)=x+
4
x
  x∈(0,+∞)的最小值,并確定相應的x的值,列表如下,請觀察表中y值隨x值變化的特點,完成下列問題:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若當x>0時,函數f(x)=x+
4
x
時,在區間(0,2)上遞減,則在
 
上遞增;
(2)當x=
 
時,f(x)=x+
4
x
,x>0的最小值為
 

(3)試用定義證明f(x)=x+
4
x
,x>0在區間上(0,2)遞減;
(4)函數f(x)=x+
4
x
,x<0有最值嗎?是最大值還是最小值?此時x為何值?
解題說明:(1)(2)兩題的結果直接填寫在答題卷中橫線上;(4)題直接回答,不需證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

觀察下列表格,探究函數f(x)=x+
4
x
,x∈(0,+∞)
的性質,
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)請觀察表中y值隨x值變化的特點,完成以下的問題.
函數f(x)=x+
4
x
(x>0)
在區間(0,2)上遞減;
函數f(x)=x+
4
x
(x>0)
在區間
(2,+∞)
(2,+∞)
上遞增.
當x=
2
2
時,y最小=
4
4

(2)證明:函數f(x)=x+
4
x
在區間(0,2)遞減.
(3)函數f(x)=x+
4
x
(x<0)
時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結果,不需證明)

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久不卡 | 亚洲欧美视频 | 日韩欧美综合 | 成年入口无限观看网站 | 欧美在线观看一区 | 亚洲精品在线播放视频 | 九九精品久久久 | 久热九九| 久久久亚洲一区二区三区 | 欧美日韩在线精品 | 69热在线观看 | 大色欧美| 亚洲综合第一页 | 久久久蜜桃 | 国产精品456在线影视 | 日韩视频中文字幕 | 日韩高清一区 | 亚洲精品在线播放视频 | 欧美福利一区二区 | 日韩毛片| 日韩在线视频观看 | 久久国产精品无码网站 | 天天看天天爽 | 青青综合网 | 久久综合一区二区三区 | 欧美激情在线狂野欧美精品 | 一个人看的www日本高清视频 | 午夜黄色影院 | 日韩免费精品视频 | 精品国产一区二区三区久久久久久 | 久久免费精品 | 五月婷婷在线观看 | 亚洲黄色影视 | 天天插天天操天天干 | 日本少妇视频 | 免费的黄色大片 | www.国产91| 中文字幕不卡在线观看 | 日日夜夜av | 亚洲a网 | 久久精品a级毛片 |