日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

觀察下列表格,探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)
的性質(zhì),
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間(0,2)上遞減;
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間
(2,+∞)
(2,+∞)
上遞增.
當(dāng)x=
2
2
時,y最小=
4
4

(2)證明:函數(shù)f(x)=x+
4
x
在區(qū)間(0,2)遞減.
(3)函數(shù)f(x)=x+
4
x
(x<0)
時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)
分析:(1)根據(jù)表格可求得函數(shù)的單調(diào)區(qū)間,根據(jù)單調(diào)性可求得最小值;
(2)直接利用單調(diào)性的定義進(jìn)行證明即可;
(3)根據(jù)(1)可得函數(shù)的最值,然后根據(jù)奇函數(shù)的性質(zhì)可得結(jié)論.
解答:解:(1)根據(jù)表格可知,f(x)=x+
4
x
(x>0)在區(qū)間(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
所以x=2時,f(x)有最小值f(2)=4;
(2)證明:設(shè)2>x2>x1>0,則f(x2)-f (x1)=(x2+
4
x2
)-(x1+
4
x1
)=
(x2-x1)(x1x2-4)
x1x2

∵2>x2>x1>0,∴x2-x1>0,x1x2-4<0,
∴f(x2)-f (x1)<0,即f(x2)<f(x1).
∴f(x)在(0,2)上單調(diào)遞減;
(3)由(1)知,f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
f(x)在∈(0,+∞)的最小值為f(2)=4,
又f(x)=x+
4
x
為奇函數(shù),所以x<0時,f(x)有最大值f(-2)=-4.
故答案為:(2,+∞),2,4.
點(diǎn)評:本題主要考查函數(shù)單調(diào)性的性質(zhì)及其證明,以及函數(shù)的奇偶性的應(yīng)用,同時考查了分析問題的能力,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
請觀察表中y值隨x值變化的特點(diǎn),完成下列問題:
(1)若函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減,則在
[2,+∞)
[2,+∞)
上遞增;
(2)當(dāng)x=
2
2
時,f(x)=x+
4
x
,(x>0)的最小值為
4
4

(3)試用定義證明f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減;
(4)函數(shù)f(x)=x+
4
x
,(x<0)有最值嗎?是最大值還是最小值?此時x為何值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)探究函數(shù)f(x)=x+
4
x
(x>0)的最小值,并確定相應(yīng)的x的值.先列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
請觀察表中y值隨x值變化的特點(diǎn),完成下列問題:((1)(2)問的填空只要寫出結(jié)果即可)
(1)若x1x2=4,則 f(x1
=
=
f(x2).(請?zhí)顚憽埃荆?,<”號);若函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間 (0,2)上遞減,則f(x)在區(qū)間
(2,+∞)
(2,+∞)
  上遞增;
(2)當(dāng)x=
2
2
時,f(x)=x+
4
x
(x>0)的最小值為
4
4

(3)根據(jù)函數(shù)f(x)的有關(guān)性質(zhì),你能得到函數(shù)f(x)=x+
4
x
(x<0)的最大值嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
  x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下,請觀察表中y值隨x值變化的特點(diǎn),完成下列問題:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若當(dāng)x>0時,函數(shù)f(x)=x+
4
x
時,在區(qū)間(0,2)上遞減,則在
 
上遞增;
(2)當(dāng)x=
 
時,f(x)=x+
4
x
,x>0的最小值為
 

(3)試用定義證明f(x)=x+
4
x
,x>0在區(qū)間上(0,2)遞減;
(4)函數(shù)f(x)=x+
4
x
,x<0有最值嗎?是最大值還是最小值?此時x為何值?
解題說明:(1)(2)兩題的結(jié)果直接填寫在答題卷中橫線上;(4)題直接回答,不需證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
 y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
請觀察表中y值隨x值變化的特點(diǎn),完成下列問題:
(1)若x1x2=4,則f(x1
=
=
f(x2)(請?zhí)顚憽埃荆?,<”號);若函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減,則在區(qū)間
(2,+∞)
(2,+∞)
上遞增;
(2)當(dāng)x=
2
2
時,f(x)=x+
4
x
,(x>0)的最小值為
4
4

(3)試用定義證明f(x)=x+
4
x
,在區(qū)間(0,2)上單調(diào)遞減.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 免费的黄色毛片 | 麻豆视频91 | 国产精品亚洲精品日韩已方 | 久久精品国产99国产 | 8x国产精品视频一区二区 | 一区二区三区在线看 | 久久综合一区二区三区 | 91亚洲精| 国产精品久久久久久 | 国产区在线 | 欧美日韩亚洲国产综合 | 精品成人| 少妇裸体淫交免费视频 | 99精品国产99久久久久久97 | 成人av影院 | www.成人 | 欧美美女爱爱视频 | 日韩欧美影院 | 麻豆成人在线 | 国产精品一区二区不卡 | 亚洲国产精品18久久 | 91视频免费播放 | 一二三四区在线观看 | 日韩在线电影 | 久久2018| 韩国精品| 欧美三级在线 | av在线播放免费 | 欧美性猛交xxxx免费看漫画 | 欧美在线视频一区二区 | 成人免费网站www网站高清 | 国产精品久久久久久久粉嫩 | 亚洲国产视频精品 | 在线天堂新版最新版在线8 久久亚洲欧美日韩精品专区 | 狠狠久久婷婷 | 天天做天天看 | 欧美在线观看一区 | 欧美精品一区二区三区蜜桃视频 | 国产一级91 | 亚洲第一国产视频 | 免费a爱片猛猛 |