【題目】在平面直角坐標系中,橢圓
的左、右焦點分別為
,離心率
.過
的直線
與橢圓
相交于
兩點,且
的周長為
.
(1)求橢圓的方程;
(2)若點位于第一象限,且
,求
的外接圓的方程.
科目:高中數學 來源: 題型:
【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個人的出生年份對應了十二種動物中的一種,即自己的屬相.現有印著六種不同生肖圖案(包含馬、羊)的毛絨娃娃各一個,小張同學的屬相為馬,小李同學的屬相為羊,現在這兩位同學從這六個毛絨娃娃中各隨機取一個(不放回),則這兩位同學都拿到自己屬相的毛絨娃娃的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐E-ABCD中,底面ABCD為正方形,平面CDE.已知
,
.
(1)證明:平面平面ABCD;
(2)求直線BE與平面ACE所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,點
和點
,動點
滿足:
.
(1)求動點的軌跡曲線
的方程并說明
是何種曲線;
(2)若拋物線:
的焦點
恰為曲線
的頂點,過點
的直線
與拋物線
交于
,
兩點,
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①,在直角梯形中,
,
,
,點
是
邊的中點,將
沿
折起,使平面
平面
,連接
,
,
,得到如圖②所示的幾何體.
(1)求證:平面
;
(2)若,二面角
的平面角的正切值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】謝賓斯基三角形是一種分形,由波蘭數學家謝賓斯基在1915年提出,先作一個正三角形.挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第5個大正三角形中隨機撒512粒大小均勻的細小顆粒物,則落在白色區域的細小顆粒物的數量約是( )
A.256B.350C.162D.96
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的右焦點為
點的坐標為
,
為坐標原點,
是等腰直角三角形.
(1)求橢圓的方程;
(2)經過點作直線
交橢圓
于
兩點,求
面積的最大值;
(3)是否存在直線交橢圓于
兩點,使點
為
的垂心(垂心:三角形三邊高線的交點)?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時.
①求函數在
處的切線方程;
②定義其中
,求
;
(2)當時,設
,
(
為自然對數的底數),若對任意給定的
,在
上總存在兩個不同的
,使得
成立,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com