(本小題滿分12分)
已知直線經過拋物線
的焦點,且與拋物線交于
兩點,點
為坐標原點.
(Ⅰ)證明:為鈍角.
(Ⅱ)若的面積為
,求直線
的方程;
科目:高中數學 來源: 題型:解答題
(10分)過直角坐標平面中的拋物線
,直線
過焦點
且與拋物線相交于
,
兩點.
⑴當直線的傾斜角為時,用
表示
的長度;
⑵當且三角形
的面積為4時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經過點
,又知直線
與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數k值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分) 已知橢圓的離心率
,A,B
分別為橢圓的長軸和短軸的端點,為AB的中點,O為坐標原點,且
.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點,求△POQ面積最大時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的對稱軸為坐標軸,焦點在
軸上,離心率
,
分別為橢圓的上頂點和右頂點,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓
相交于
兩點,且
(其中
為坐標原點),求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題10分)已知,動點
滿足
,設動點
的軌跡是曲線
,直線
:
與曲線
交于
兩點.(1)求曲線
的方程;
(2)若,求實數
的值;
(3)過點作直線
與
垂直,且直線
與曲線
交于
兩點,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)已知橢圓右焦點為
,M為橢圓的上頂點,O為坐標原點,且
是等腰直角三角形,(1)求橢圓的方程(2)過M分別作直線MA,MB,交橢圓于A,B兩點,設兩直線的斜率分別為
,且
,證明:直線AB過定點,并求定點的坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,其中左焦點
(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com