【題目】已知拋物線與直線
相切于點(diǎn)
,點(diǎn)
與
關(guān)于
軸對(duì)稱(chēng).
(1)求拋物線的方程及點(diǎn)
的坐標(biāo);
(2)設(shè)是
軸上兩個(gè)不同的動(dòng)點(diǎn),且滿足
,直線
、
與拋物線
的另一個(gè)交點(diǎn)分別為
,試判斷直線
與直線
的位置關(guān)系,并說(shuō)明理由.如果相交,求出的交點(diǎn)的坐標(biāo).
【答案】(1),
;(2)
∥
,詳見(jiàn)解析.
【解析】
(1)聯(lián)立方程組,整理得,根據(jù)
,求得
,得到拋物線
的方程,進(jìn)而得到點(diǎn)
的坐標(biāo),從而求得點(diǎn)
的坐標(biāo).
(2)設(shè),直線
的方程為
,得出
的方程為
,
代入,求得
,進(jìn)而得到
,代入拋物線的方程求得
的坐標(biāo),利用斜率公式,即可得到結(jié)論.
(1)由題意,拋物線與直線
相切于點(diǎn)
,
聯(lián)立方程組,消去
,得
,
所以,解得
或
,
又,解得
,所以拋物線
的方程為
,
由,得
,所以切點(diǎn)為
,
因?yàn)辄c(diǎn)與
關(guān)于
軸對(duì)稱(chēng),點(diǎn)
的坐標(biāo)
.
(2)直線,理由如下:
依題意,直線的斜率不為
,
設(shè),直線
的方程為
,
由(1)知點(diǎn),則
,所以直線
的方程為
,
代入,解得
(舍)或
,所以
,
因?yàn)?/span>,所以
關(guān)于
對(duì)稱(chēng),得
,
同理得的方程為
,代入
,
得,
,
直線的斜率為
,因此
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)若當(dāng)時(shí)
取得極值,求a的值及
的單調(diào)區(qū)間;
(Ⅱ)若存在兩個(gè)極值點(diǎn)
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形的邊長(zhǎng)為12,
,
與
交于
點(diǎn),將菱形
沿對(duì)角線
折起,得到三棱錐
,點(diǎn)
是棱
的中點(diǎn),
.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與橢圓
相交于點(diǎn)M(0,1),N(0,-1),且橢圓的離心率為
.
(1)求的值和橢圓C的方程;
(2)過(guò)點(diǎn)M的直線交圓O和橢圓C分別于A,B兩點(diǎn).
①若,求直線
的方程;
②設(shè)直線NA的斜率為,直線NB的斜率為
,問(wèn):
是否為定值? 如果是,求出定值;如果不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)雙曲線的左頂點(diǎn)為D,且以點(diǎn)D為圓心的圓
與雙曲線C分別相交于點(diǎn)A、B,如圖所示.
(1)求雙曲線C的方程;
(2)求的最小值,并求出此時(shí)圓D的方程;
(3)設(shè)點(diǎn)P為雙曲線C上異于點(diǎn)A、B的任意一點(diǎn),且直線PA、PB分別與x軸相交于點(diǎn)M、N,求證:為定值(其中O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,過(guò)點(diǎn)
且與
軸垂直的直線被橢圓截得的線段長(zhǎng)為
,且
與短軸兩端點(diǎn)的連線相互垂直.
(1)求橢圓的方程;
(2)若圓上存在兩點(diǎn)
,
,橢圓
上存在兩個(gè)點(diǎn)
滿足:
三點(diǎn)共線,
三點(diǎn)共線,且
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線
與曲線
交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇跡之一,其中較為著名的是胡夫金字塔.令人吃驚的并不僅僅是胡夫金字塔的雄壯身姿,還有發(fā)生在胡夫金字塔上的數(shù)字“巧合”.如胡夫金字塔的底部周長(zhǎng)如果除以其高度的兩倍,得到的商為3.14159,這就是圓周率較為精確的近似值.金字塔底部形為正方形,整個(gè)塔形為正四棱錐,經(jīng)古代能工巧匠建設(shè)完成后,底座邊長(zhǎng)大約230米.因年久風(fēng)化,頂端剝落10米,則胡夫金字塔現(xiàn)高大約為( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的短軸長(zhǎng)為2,離心率為
,左頂點(diǎn)為A,過(guò)點(diǎn)A的直線l與C交于另一個(gè)點(diǎn)M,且與直線x=t交于點(diǎn)N.
(1)求橢圓C的方程;
(2)是否存在實(shí)數(shù)t,使得為定值?若存在,求實(shí)數(shù)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com