【題目】在中,設(shè)邊
,
,
所對(duì)的角分別為
,
,
,已知
.
(1)求角的大小;
(2)若,求
的值.
【答案】(1);(2)
【解析】
(1)利用正弦定理可將原式化簡為cosAsinA
,整理得
sinC﹣cosC=1,即sin(C
)
,進(jìn)而可得C的大小;
(2)利用余弦定理可將cosB化成
,即8sinAcosB=5sinC=5sin
,進(jìn)而求出sinAcosB的值.
(1)△ABC中,,即cosA
sinA
,
∴sinCcosAsinAsinC=sinB+sinA,
∵sinB+sinA=sin(A+C)+sinA=sinAcosC+sinCcosA+sinA,
∴sinCcosAsinAsinC=sinAcosC+sinCcosA+sinA,可得
sinAsinC=sinAcosC+sinA,
∵sinA≠0,
∴sinC﹣cosC=1,即sin(C
)
,
∵C∈(0,π),C∈(
,
),
∴C,可得C
.
(2)若,則cosB
,即8sinAcosB=5sinC=5sin
,
所以sinAcosB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
,
為常數(shù))在
內(nèi)有兩個(gè)極值點(diǎn)
,
(
)
(1)求實(shí)數(shù)的取值范圍;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)在定義域
上單調(diào)遞增,若
對(duì)任意的
成立,則實(shí)數(shù)
的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知
在
有且僅有3個(gè)零點(diǎn),對(duì)于下列4個(gè)說法正確的是( )
A.在上存在
,滿足
B.在
有且僅有1個(gè)最大值點(diǎn)
C.在
單調(diào)遞增
D.的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,動(dòng)點(diǎn)
(其中
)到點(diǎn)
的距離的
倍與點(diǎn)
到直線
的距離的
倍之和記為
,且
.
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)設(shè)過點(diǎn)的直線
與軌跡
交于
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的偶函數(shù)滿足
,且
時(shí),
,則函數(shù)
的零點(diǎn)個(gè)數(shù)是( )
A. 6個(gè)B. 8個(gè)C. 2個(gè)D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)=a(a為常數(shù)).
(1)求a的值;
(2)若函數(shù)g(x)=|(2x+1)f(x)|﹣k有2個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)若x∈[﹣2,﹣1]時(shí),不等式f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為
,橢圓
的離心率正好是雙曲線
的離心率的倒數(shù),橢圓
的短軸長等于拋物線
上一點(diǎn)
到拋物線焦點(diǎn)
的距離.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓
的兩個(gè)交點(diǎn)為
,
兩點(diǎn),已知圓
:
與
軸的交點(diǎn)分別為
,
(點(diǎn)
在
軸的正半軸),且直線
與圓
相切,求
的面積與
的面積乘積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com